Current Imaging Strategies for Patient Selection in Acute Ischemic Stroke Trials

  • Jenny P. Tsai
  • Gregory W. AlbersEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Neuroimaging is an important part of acute ischemic stroke trials. Its key components include vascular, ischemic core, and penumbral imaging. These can be acquired by two modalities: computed tomography (CT) and magnetic resonance imaging (MRI). This chapter provides an overview of common CT- and MRI-based angiographic, parenchymal, and perfusion imaging techniques, and their roles in patient selection in acute ischemic stroke trials.


Computed tomography Computed tomography angiography Computed tomography perfusion Magnetic resonance angiography Diffusion-weighted imaging Perfusion-weighted imaging Arterial spin labeling ASPECT score 



Apparent diffusion coefficient


American Heart Association/American Stroke Association


Arterial spin labeling


Alberta Stroke Program Early Computed Tomography Score


Cerebral blood flow


Cerebral blood volume


Computed tomography


Computed tomography angiography


Computed tomography perfusion imaging


Dose Escalation of Desmoteplase for Acute Ischemic Stroke trial


Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution study


Desmoteplase In Acute Stroke trial


Diffusion-weighted imaging


Echoplanar Imaging Thrombolytic Evaluation trial


EXtending the time for Thrombolysis in Emergency Neurological Deficits trial


Fluid-attenuated inversion recovery sequence


Interventional Management of Stroke-III trial


Peak kilovoltage


Milliamps per second


Middle cerebral artery


Maximal intensity projection


Multiphase computed tomography angiography


Magnetic resonance angiography


Magnetic resonance imaging




Mean transit time


Noncontrast computed tomography


Perfusion-weighted imaging


Signal-to-noise ratio


Time-to-maximum of the residue function




Tissue plasminogen activator




Vertebrobasilar Flow Evaluation and Risk in Transient Ischemic Attack and Stroke study


  1. 1.
    Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, Kummer von R et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274(13):1017–1025Google Scholar
  2. 2.
    The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1587CrossRefGoogle Scholar
  3. 3.
    Barber PA, Demchuk AM, Zhang J, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355(9216):1670–1674PubMedCrossRefGoogle Scholar
  4. 4.
    Pexman JH, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME et al (2001) Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR Am J Neuroradiol 22(8):1534–1542PubMedGoogle Scholar
  5. 5.
    Barber PA, Hill MD, Eliasziw M, Demchuk AM, Pexman JHW, Hudon ME et al (2005) Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol Neurosurg Psychiatry 76(11):1528–1533PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Dzialowski I, Hill MD, Coutts SB, Demchuk AM, Kent DM, Wunderlich O et al (2006) Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. Stroke 37(4):973–978PubMedCrossRefGoogle Scholar
  7. 7.
    Weir NU, Pexman JHW, Hill MD, Buchan AM, CASES Investigators (2006) How well does ASPECTS predict the outcome of acute stroke treated with IV tPA? Neurology 67(3):516–518PubMedCrossRefGoogle Scholar
  8. 8.
    Khatri P, Yeatts SD, Mazighi M, Broderick JP, Liebeskind DS, Demchuk AM, Amarenco P, Carrozzella J, Spilker J, Foster LD, Goyal M, Hill MD, Palesch YY, Jauch EC, Haley EC, Vagal A, Tomsick TA, IMS III Trialists (2014) Time to angiographic reperfusion and clinical outcome after acute ischaemic stroke: an analysis of data from the Interventional Management of Stroke (IMS III) phase 3 trial. Lancet Neurol 13(6):567–574PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fransen PSS, Berkhemer OA, Lingsma HF, Beumer D, van den Berg LA, Yoo AJ (2016) Time to reperfusion and treatment effect for acute ischemic stroke: a randomized clinical trial. Jama Neurol 73(2):190–196PubMedCrossRefGoogle Scholar
  10. 10.
    Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM et al (2015) Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 372(24):2285–2295PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell BC, Mitchell PJ, Investigators E-I (2015) Endovascular therapy for ischemic stroke. N Engl J Med 372(24):2365–2366PubMedGoogle Scholar
  12. 12.
    Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J et al (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030PubMedCrossRefGoogle Scholar
  13. 13.
    Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A et al (2015) Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 372(24):2296–2306PubMedCrossRefGoogle Scholar
  14. 14.
    Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ et al (2015) A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 372(1):11–20PubMedCrossRefGoogle Scholar
  15. 15.
    Phan TG, Donnan GA, Koga M, Mitchell LA, Molan M, Fitt G et al (2006) The ASPECTS template is weighted in favor of the striatocapsular region. Neuroimage 31(2):477–481PubMedCrossRefGoogle Scholar
  16. 16.
    Aviv RI, Mandelcorn J, Chakraborty S, Gladstone D, Malham S, Tomlinson G et al (2007) Alberta Stroke Program Early CT Scoring of CT perfusion in early stroke visualization and assessment. AJNR Am J Neuroradiol 28(10):1975–1980PubMedCrossRefGoogle Scholar
  17. 17.
    Finlayson O, John V, Yeung R, Dowlatshahi D, Howard P, Zhang L et al (2013) Interobserver agreement of ASPECT score distribution for noncontrast CT, CT angiography, and CT perfusion in acute stroke. Stroke 44(1):234–236PubMedCrossRefGoogle Scholar
  18. 18.
    McTaggart RA, Jovin TG, Lansberg MG, Mlynash M, Jayaraman MV, Choudhri OA et al (2015) Alberta stroke program early computed tomographic scoring performance in a series of patients undergoing computed tomography and MRI: reader agreement, modality agreement, and outcome prediction. Stroke 46(2):407–412PubMedCrossRefGoogle Scholar
  19. 19.
    Rangaraju S, Streib C, Aghaebrahim A, Jadhav A, Frankel M, Jovin TG (2015) Relationship between lesion topology and clinical outcome in anterior circulation large vessel occlusions. Stroke 46(7):1787–1792PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Broderick JP, Palesch YY, Demchuk AM, Yeatts SD, Khatri P, Hill MD et al (2014) Evolution of practice during the Interventional Management of Stroke III Trial and implications for ongoing trials. Stroke 45(12):3606–3611PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Demchuk AM, Goyal M, Yeatts SD, Carrozzella J, Foster LD, Qazi E et al (2014) Recanalization and clinical outcome of occlusion sites at baseline CT angiography in the Interventional Management of Stroke III trial. Radiology 273(1):202–210PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC et al (2015) 2015 American Heart Association/American Stroke Association Focused Update of the 2013 Guidelines for the Early Management of Patients With Acute Ischemic Stroke Regarding Endovascular Treatment: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 46:3020–3035PubMedCrossRefGoogle Scholar
  23. 23.
    Yang C-Y, Chen Y-F, Lee C-W, Huang A, Shen Y, Wei C et al (2008) Multiphase CT angiography versus single-phase CT angiography: comparison of image quality and radiation dose. AJNR Am J Neuroradiol 29(7):1288–1295PubMedCrossRefGoogle Scholar
  24. 24.
    Menon BK, d’Esterre CD, Qazi EM, Almekhlafi M, Hahn L, Demchuk AM et al (2015) Multiphase CT angiography: a new tool for the imaging triage of patients with acute ischemic stroke. Radiology 275(2):510–520PubMedCrossRefGoogle Scholar
  25. 25.
    Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 137(3):679–686PubMedCrossRefGoogle Scholar
  26. 26.
    Campbell BCV, Mitchell PJ, Yan B, Parsons MW, Christensen S, Churilov L et al (2014) A multicenter, randomized, controlled study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits with Intra-Arterial therapy (EXTEND-IA). Int J Stroke 9(1):126–132PubMedCrossRefGoogle Scholar
  27. 27.
    Konstas AA, Goldmakher GV, Lee T-Y, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. AJNR Am J Neuroradiol 30(4):662–668PubMedCrossRefGoogle Scholar
  28. 28.
    Murphy A, So A, Lee T-Y, Symons S, Jakubovic R, Zhang L et al (2014) Low dose CT perfusion in acute ischemic stroke. Neuroradiology 56(12):1055–1062PubMedCrossRefGoogle Scholar
  29. 29.
    Konstas AA, Goldmakher GV, Lee T-Y, Lev MH (2009) Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 2: technical implementations. AJNR Am J Neuroradiol 30(5):885–892PubMedCrossRefGoogle Scholar
  30. 30.
    Niesten JM, van der Schaaf IC, Riordan AJ, de Jong HWAM, Horsch AD, Eijspaart D et al (2014) Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction. Eur Radiol 24(2):484–493PubMedCrossRefGoogle Scholar
  31. 31.
    Aviv RI, Parsons M, Bivard A, Jahromi B, Wintermark M (2015) Multiphase CT angiography: a poor man’s perfusion CT? Radiology 277(3):922–924PubMedCrossRefGoogle Scholar
  32. 32.
    Schaefer PW, Barak ER, Kamalian S, Gharai LR, Schwamm L, Gonzalez RG et al (2008) Quantitative assessment of core/penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. Stroke 39(11):2986–2992PubMedCrossRefGoogle Scholar
  33. 33.
    Emmer BJ, Rijkee M, Niesten JM, Wermer MJH, Velthuis BK, van Walderveen MAA (2014) Whole brain CT perfusion in acute anterior circulation ischemia: coverage size matters. Neuroradiology 56(12):1121–1126PubMedCrossRefGoogle Scholar
  34. 34.
    Furtado AD, Lau BC, Vittinghoff E, Dillon WP, Smith WS, Rigby T et al (2010) Optimal brain perfusion CT coverage in patients with acute middle cerebral artery stroke. AJNR Am J Neuroradiol 31(4):691–695PubMedCrossRefGoogle Scholar
  35. 35.
    Wintermark M, Smith WS, Ko NU, Quist M, Schnyder P, Dillon WP (2004) Dynamic perfusion CT: optimizing the temporal resolution and contrast volume for calculation of perfusion CT parameters in stroke patients. AJNR Am J Neuroradiol 25(5):720–729PubMedGoogle Scholar
  36. 36.
    Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60(5):508–517PubMedCrossRefGoogle Scholar
  37. 37.
    Campbell BCV, Yassi N, Ma H, Sharma G, Salinas S, Churilov L et al (2015) Imaging selection in ischemic stroke: feasibility of automated CT-perfusion analysis. Int J Stroke 10(1):51–54PubMedCrossRefGoogle Scholar
  38. 38.
    Campbell BCV, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM et al (2011) Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke 42(12):3435–3440PubMedCrossRefGoogle Scholar
  39. 39.
    Campbell BCV, Christensen S, Levi CR, Desmond PM, Donnan GA, Davis SM et al (2012) Comparison of computed tomography perfusion and magnetic resonance imaging perfusion-diffusion mismatch in ischemic stroke. Stroke 43(10):2648–2653PubMedCrossRefGoogle Scholar
  40. 40.
    Mokin M, Morr S, Fanous AA, Shallwani H, Natarajan SK, Levy EI et al (2015) Correlation between cerebral blood volume values and outcomes in endovascular therapy for acute ischemic stroke. J Neurointerv Surg 7(10):705–708PubMedCrossRefGoogle Scholar
  41. 41.
    Mui K, Yoo AJ, Verduzco L, Copen WA, Hirsch JA, Gonzalez RG et al (2011) Cerebral blood flow thresholds for tissue infarction in patients with acute ischemic stroke treated with intra-arterial revascularization therapy depend on timing of reperfusion. AJNR Am J Neuroradiol 32(5):846–851PubMedCrossRefGoogle Scholar
  42. 42.
    Turk AS, Magarick JA, Frei D, Fargen KM, Chaudry I, Holmstedt CA et al (2013) CT perfusion-guided patient selection for endovascular recanalization in acute ischemic stroke: a multicenter study. J Neurointerv Surg 5(6):523–527PubMedCrossRefGoogle Scholar
  43. 43.
    Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D et al (2006) Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke 37(4):979–985PubMedCrossRefGoogle Scholar
  44. 44.
    Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ et al (2006) Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke 37(7):1771–1777PubMedCrossRefGoogle Scholar
  45. 45.
    Wintermark M, Reichhart M, Thiran J-P, Maeder P, Chalaron M, Schnyder P et al (2002) Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 51(4):417–432PubMedCrossRefGoogle Scholar
  46. 46.
    Albers GW, Goyal M, Jahan R, Bonafe A, Diener H-C, Levy EI et al (2015) Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol 79(1):76–89PubMedCrossRefGoogle Scholar
  47. 47.
    Olivot JM, Mlynash M, Zaharchuk G, Straka M, Bammer R, Schwartz N et al (2009) Perfusion MRI (Tmax and MTT) correlation with xenon CT cerebral blood flow in stroke patients. Neurology 72(13):1140–1145PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L et al (2009) Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40(2):469–475PubMedCrossRefGoogle Scholar
  49. 49.
    Ma H, Parsons MW, Christensen S, Campbell BCV, Churilov L, Connelly A et al (2012) A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND). Int J Stroke 7(1):74–80PubMedCrossRefGoogle Scholar
  50. 50.
    d’Esterre CD, Boesen ME, Ahn SH, Pordeli P, Najm M, Minhas P et al (2015) Time-dependent computed tomographic perfusion thresholds for patients with acute ischemic stroke. Stroke 46(12):3390–3397PubMedCrossRefGoogle Scholar
  51. 51.
    Lansberg MG, Lee J, Christensen S, Straka M, De Silva DA, Mlynash M et al (2011) RAPID automated patient selection for reperfusion therapy: a pooled analysis of the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) and the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) Study. Stroke 42(6):1608–1614PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Straka M, Albers GW, Bammer R (2010) Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 32(5):1024–1037PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Soares BP, Dankbaar JW, Bredno J, Cheng S, Bhogal S, Dillon WP et al (2009) Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability. Neuroradiology 51(7):445–451PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG et al (2012) MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 11(10):860–867PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Campbell BC, Christensen S, Parsons MW, Churilov L, Desmond PM, Barber PA et al (2013) Advanced imaging improves prediction of hemorrhage after stroke thrombolysis. Ann Neurol 73(4):510–519PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J et al (1990) Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14(2):330–346PubMedCrossRefGoogle Scholar
  57. 57.
    Mintorovitch J, Moseley ME, Chileuitt L, Shimizu H, Cohen Y, Weinstein PR (1991) Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn Reson Med 18(1):39–50PubMedCrossRefGoogle Scholar
  58. 58.
    Minematsu K, Li L, Fisher M, Sotak CH, Davis MA, Fiandaca MS (1992) Diffusion-weighted magnetic resonance imaging: rapid and quantitative detection of focal brain ischemia. Neurology 42(1):235–240PubMedCrossRefGoogle Scholar
  59. 59.
    Minematsu K, Li L, Sotak CH, Davis MA, Fisher M (1992) Reversible focal ischemic injury demonstrated by diffusion-weighted magnetic resonance imaging in rats. Stroke 23(9):1304–1310; discussion 1310–1PubMedCrossRefGoogle Scholar
  60. 60.
    Warach S, Schellinger PD (2003) The role of stroke MRI in clinical trials. In: Stroke MRI. Steinkopff, Heidelberg, pp 91–98CrossRefGoogle Scholar
  61. 61.
    Lansberg MG, Albers GW, Beaulieu C, Marks MP (2000) Comparison of diffusion-weighted MRI and CT in acute stroke. Neurology 54(8):1557–1561PubMedCrossRefGoogle Scholar
  62. 62.
    Mohr JP, Biller J, Hilal SK, Yuh WT, Tatemichi TK, Hedges S et al (1995) Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26(5):807–812PubMedCrossRefGoogle Scholar
  63. 63.
    von Baumgarten L, Thierfelder KM, Beyer SE, Baumann AB, Bollwein C, Janssen H et al (2016) Early CT perfusion mismatch in acute stroke is not time-dependent but relies on collateralization grade. Neuroradiology 58(4):357–365CrossRefGoogle Scholar
  64. 64.
    Oppenheim C, Stanescu R, Dormont D, Crozier S, Marro B, Samson Y et al (2000) False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR Am J Neuroradiol 21(8):1434–1440PubMedGoogle Scholar
  65. 65.
    Engelter ST, Wetzel SG, Radue EW, Rausch M, Steck AJ, Lyrer PA (2004) The clinical significance of diffusion-weighted MR imaging in infratentorial strokes. Neurology 62(4):574–580PubMedCrossRefGoogle Scholar
  66. 66.
    Kate MP, Riaz P, Gioia L, Sivakumar L, Jeerakathil T, Buck B et al (2015) Dynamic evolution of diffusion-weighted imaging lesions in patients with minor ischemic stroke. Stroke 46(8):2318–2321PubMedCrossRefGoogle Scholar
  67. 67.
    Chemmanam T, Campbell BCV, Christensen S, Nagakane Y, Desmond PM, Bladin CF et al (2010) Ischemic diffusion lesion reversal is uncommon and rarely alters perfusion-diffusion mismatch. Neurology 75(12):1040–1047PubMedCrossRefGoogle Scholar
  68. 68.
    Campbell BCV, Purushotham A, Christensen S, Desmond PM, Nagakane Y, Parsons MW et al (2012) The infarct core is well represented by the acute diffusion lesion: sustained reversal is infrequent. J Cereb Blood Flow Metab 32(1):50–56PubMedCrossRefGoogle Scholar
  69. 69.
    Kidwell CS, Saver JL, Starkman S, Duckwiler G, Jahan R, Vespa P et al (2002) Late secondary ischemic injury in patients receiving intraarterial thrombolysis. Ann Neurol 52(6):698–703PubMedCrossRefGoogle Scholar
  70. 70.
    Inoue M, Mlynash M, Christensen S, Wheeler HM, Straka M, Tipirneni A et al (2014) Early diffusion-weighted imaging reversal after endovascular reperfusion is typically transient in patients imaged 3 to 6 hours after onset. Stroke 45(4):1024–1028PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hassen WB, Tisserand M, Turc G, Charron S, Seners P, Edjlali M et al (2016) Comparison between voxel-based and subtraction methods for measuring diffusion-weighted imaging lesion growth after thrombolysis. Int J Stroke 11(2):221–228PubMedCrossRefGoogle Scholar
  72. 72.
    Olivot JM, Mlynash M, Thijs VN, Kemp S, Lansberg MG, Wechsler L et al (2008) Relationships between infarct growth, clinical outcome, and early recanalization in diffusion and perfusion imaging for understanding stroke evolution (DEFUSE). Stroke 39(8):2257–2263PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yang JJ, Hill MD, Morrish WF, Hudon ME, Barber PA, Demchuk AM et al (2002) Comparison of pre- and postcontrast 3D time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. AJNR Am J Neuroradiol 23(4):557–567PubMedGoogle Scholar
  74. 74.
    Axel L (1986) Blood flow effects in magnetic resonance imaging. Magn Reson Annu 237–244Google Scholar
  75. 75.
    Lan L, Leng X, Abrigo J, Fang H, Ip VHL, Soo YOY et al (2016) Diminished signal intensities distal to intracranial arterial stenosis on time-of-flight MR angiography might indicate delayed cerebral perfusion. Cerebrovasc Dis 42(3-4):232–239PubMedCrossRefGoogle Scholar
  76. 76.
    Lansberg MG, Thijs VN, Bammer R, Olivot JM, Marks MP, Wechsler LR et al (2008) The MRA-DWI mismatch identifies patients with stroke who are likely to benefit from reperfusion. Stroke 39(9):2491–2496PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mishra NK, Albers GW, Christensen S, Marks M, Hamilton S, Straka M et al (2014) Comparison of magnetic resonance imaging mismatch criteria to select patients for endovascular stroke therapy. Stroke 45(5):1369–1374PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Deguchi I, Dembo T, Yoshimura S, Sakai N, Okada Y, Kitagawa K et al (2014) Relationship Between Magnetic Resonance Angiography–Diffusion-weighted Imaging Mismatch and Clinical Outcome in Endovascular Treatment for Acute Ischemic Stroke: Subgroup Analysis of the Recovery by Endovascular Salvage for Cerebral Ultra-acute Embolism–Japan Registry. J Stroke Cerebrovasc Dis 23(6):1471–1476PubMedCrossRefGoogle Scholar
  79. 79.
    Deguchi I, Takeda H, Furuya D, Dembo T, Nagoya H, Kato Y et al (2012) Significance of magnetic resonance angiography-diffusion weighted imaging mismatch in hyperacute cerebral infarction. J Stroke Cerebrovasc Dis 21(2):108–113PubMedCrossRefGoogle Scholar
  80. 80.
    Inoue T, Tamura A, Tsutsumi K, Saito I, Saito N (2013) Surgical embolectomy for large vessel occlusion of anterior circulation. Br J Neurosurg 27(6):783–790PubMedCrossRefGoogle Scholar
  81. 81.
    Deguchi I, Dembo T, Fukuoka T, Nagoya H, Maruyama H, Kato Y et al (2012) Usefulness of MRA-DWI mismatch in neuroendovascular therapy for acute cerebral infarction. Eur J Neurol 19(1):114–120PubMedCrossRefGoogle Scholar
  82. 82.
    Thijs VN, Adami A, Neumann-Haefelin T, Moseley ME, Marks MP, Albers GW (2001) Relationship between severity of MR perfusion deficit and DWI lesion evolution. Neurology 57(7):1205–1211PubMedCrossRefGoogle Scholar
  83. 83.
    Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Modder U et al (1999) Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 30(8):1591–1597PubMedCrossRefGoogle Scholar
  84. 84.
    Karonen JO, Vanninen RL, Liu Y, Ostergaard L, Kuikka JT, Nuutinen J et al (1999) Combined diffusion and perfusion MRI with correlation to single-photon emission CT in acute ischemic stroke. Ischemic penumbra predicts infarct growth. Stroke 30(8):1583–1590PubMedCrossRefGoogle Scholar
  85. 85.
    Hacke W, Furlan AJ, Al-Rawi Y, Dávalos A, Fiebach JB, Gruber F et al (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8(2):141–150PubMedCrossRefGoogle Scholar
  86. 86.
    Davis SM, Donnan GA, Parsons MW, Levi C, Butcher KS, Peeters A et al (2008) Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7(4):299–309PubMedCrossRefGoogle Scholar
  87. 87.
    Meijs M, Christensen S, Lansberg MG, Albers GW, Calamante F (2015) Analysis of perfusion MRI in stroke: to deconvolve, or not to deconvolve. Magn Reson Med. doi: 10.1002/mrm.26024 PubMedGoogle Scholar
  88. 88.
    Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19(7):701–735PubMedCrossRefGoogle Scholar
  89. 89.
    Barbier EL, Lamalle L, Décorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13(4):496–520PubMedCrossRefGoogle Scholar
  90. 90.
    Lin L, Bivard A, Krishnamurthy V, Levi CR, Parsons MW (2016) Whole-brain CT perfusion to quantify acute ischemic penumbra and core. Radiology 279(3):876–887PubMedCrossRefGoogle Scholar
  91. 91.
    Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50(1):164–174PubMedCrossRefGoogle Scholar
  92. 92.
    Yamada K, Wu O, Gonzalez RG, Bakker D, Ostergaard L, Copen WA et al (2002) Magnetic resonance perfusion-weighted imaging of acute cerebral infarction: effect of the calculation methods and underlying vasculopathy. Stroke 33(1):87–94PubMedCrossRefGoogle Scholar
  93. 93.
    Kidwell CS, Jahan R, Gornbein J, Alger JR, Nenov V, Ajani Z et al (2013) A trial of imaging selection and endovascular treatment for ischemic stroke. N Engl J Med 368(10):914–923PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lansberg MG, Cereda CW, Mlynash M, Mishra NK, Inoue M, Kemp S et al (2015) Response to endovascular reperfusion is not time-dependent in patients with salvageable tissue. Neurology 85(8):708–714PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fisher M, Albers GW (2013) Advanced imaging to extend the therapeutic time window of acute ischemic stroke. Ann Neurol 73(1):4–9PubMedCrossRefGoogle Scholar
  96. 96.
    Inoue M, Mlynash M, Straka M, Lansberg MG, Zaharchuk G, Bammer R et al (2012) Patients with the malignant profile within 3 hours of symptom onset have very poor outcomes after intravenous tissue-type plasminogen activator therapy. Stroke 43(9):2494–2496PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mlynash M, Lansberg MG, De Silva DA, Lee J, Christensen S, Straka M et al (2011) Refining the definition of the malignant profile: insights from the DEFUSE-EPITHET pooled data set. Stroke 42(5):1270–1275PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Puetz V, Dzialowski I, Hill MD, Steffenhagen N, Coutts SB, O’Reilly C et al (2010) Malignant profile detected by CT angiographic information predicts poor prognosis despite thrombolysis within three hours from symptom onset. Cerebrovasc Dis 29(6):584–591PubMedCrossRefGoogle Scholar
  99. 99.
    Yoo R-E, Yun TJ, Rhim JH, Yoon B-W, Kang KM, Choi SH et al (2015) Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. Stroke 46(2):564–567PubMedCrossRefGoogle Scholar
  100. 100.
    Bokkers RPH, Hernandez DA, Merino JG, Mirasol RV, van Osch MJ, Hendrikse J et al (2012) Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke 43(5):1290–1294PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zaharchuk G, El Mogy IS, Fischbein NJ, Albers GW (2012) Comparison of arterial spin labeling and bolus perfusion-weighted imaging for detecting mismatch in acute stroke. Stroke 43(7):1843–1848PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Amukotuwa SA, Yu C, Zaharchuk G (2015) 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J Magn Reson Imaging 43(1):11–27PubMedCrossRefGoogle Scholar
  103. 103.
    Amukotuwa SA, Yu C, Zaharchuk G (2016) 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J Magn Reson Imaging 43(1):11–27PubMedCrossRefGoogle Scholar
  104. 104.
    Kim BJ, Kang HG, Kim H-J, Ahn S-H, Kim NY, Warach S et al (2014) Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke 16(3):131–145PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D et al (2016) Macrocyclic and other non-group 1 gadolinium contrast agents deposit Low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol 1Google Scholar
  106. 106.
    Stojanov D, Aracki-Trenkic A, Benedeto-Stojanov D (2016) Gadolinium deposition within the dentate nucleus and globus pallidus after repeated administrations of gadolinium-based contrast agents-current status. Neuroradiology 58(5):433–441PubMedCrossRefGoogle Scholar
  107. 107.
    Thomsen HS (2007) Nephrogenic systemic fibrosis (NSF): a late adverse reaction to some of the gadolinium based contrast agents. Cancer Imaging 7(1):130–137PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Thomsen HS (2016) Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium - 1997-2006-2016. Part 1. Acta Radiol 57(5):515–520PubMedCrossRefGoogle Scholar
  109. 109.
    Thomsen HS (2016) Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium - 1997-2006-2016. Part 2. Acta Radiol 57(6):643–648PubMedCrossRefGoogle Scholar
  110. 110.
    Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16(12):2619–2621PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nael K, Khan R, Choudhary G, Meshksar A, Villablanca P, Tay J et al (2014) Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries. Stroke 45(7):1985–1991PubMedCrossRefGoogle Scholar
  112. 112.
    John S, Stock S, Masaryk T, Bauer A, Cerejo R, Uchino K et al (2016) Performance of CT angiography on a mobile stroke treatment unit: implications for triage. J NeuroimagingGoogle Scholar
  113. 113.
    Rajan SS, Baraniuk S, Parker S, Wu T-C, Bowry R, Grotta JC (2015) Implementing a Mobile Stroke Unit Program in the United States. JAMA Neurol 72(2):229–234PubMedCrossRefGoogle Scholar
  114. 114.
    Walter S, Kostpopoulos P, Haass A, Helwig S, Keller I, Licina T et al (2010) Bringing the hospital to the patient: first treatment of stroke patients at the emergency site. PLoS One 5(10):e13758PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    John S, Stock S, Cerejo R, Uchino K, Winners S, Russman A et al (2016) Brain imaging using mobile CT: current status and future prospects. J Neuroimaging 26(1):5–15PubMedCrossRefGoogle Scholar
  116. 116.
    Fassbender K, Walter S, Liu Y, Muehlhauser F, Ragoschke A, Kuehl S et al (2003) “Mobile stroke unit” for hyperacute stroke treatment. Stroke 34(6):e44PubMedCrossRefGoogle Scholar
  117. 117.
    Walter S, Kostopoulos P, Haass A, Keller I, Lesmeister M, Schlechtriemen T et al (2012) Diagnosis and treatment of patients with stroke in a mobile stroke unit versus in hospital: a randomised controlled trial. Lancet Neurol 11(5):397–404PubMedCrossRefGoogle Scholar
  118. 118.
    Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Lang S, Mennecke A et al (2015) Dynamic angiography and perfusion imaging using flat detector CT in the angiography suite: a pilot study in patients with acute middle cerebral artery occlusions. AJNR Am J Neuroradiol 36(10):1964–1970PubMedCrossRefGoogle Scholar
  119. 119.
    Yang P, Niu K, Wu Y, Struffert T, Dorfler A, Schafer S et al (2015) Time-resolved C-arm computed tomographic angiography derived from computed tomographic perfusion acquisition: new capability for One-stop-shop acute ischemic stroke treatment in the angiosuite. Stroke 46(12):3383–3389PubMedCrossRefGoogle Scholar
  120. 120.
    Amin-Hanjani S, Pandey DK, Rose-Finnell L, Du X, Richardson D, Thulborn KR et al (2016) Effect of hemodynamics on stroke risk in symptomatic atherosclerotic vertebrobasilar occlusive disease. JAMA Neurol 73(2):178–185PubMedCrossRefGoogle Scholar
  121. 121.
    Amin-Hanjani S, Du X, Zhao M, Walsh K, Malisch TW, Charbel FT (2005) Use of quantitative magnetic resonance angiography to stratify stroke risk in symptomatic vertebrobasilar disease. Stroke 36(6):1140–1145PubMedCrossRefGoogle Scholar
  122. 122.
    Haase J, Magnussen IB, Ogilvy CS, Ojemann RG, Meyer FB, Quest DO et al (1999) Evaluating patients with vertebrobasilar transient ischemic attacks. Surg Neurol 52(4):386–392PubMedCrossRefGoogle Scholar
  123. 123.
    Amin-Hanjani S, Rose-Finnell L, Richardson D, Ruland S, Pandey D, Thulborn KR et al (2010) Vertebrobasilar Flow Evaluation and Risk of Transient Ischaemic Attack and Stroke study (VERiTAS): rationale and design. Int J Stroke 5(6):499–505PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of NeurologyStanford UniversityStanfordUSA

Personalised recommendations