Advertisement

A New Personal Verification Technique Using Finger-Knuckle Imaging

  • Rafal DorozEmail author
  • Krzysztof Wrobel
  • Piotr Porwik
  • Hossein Safaverdi
  • Michal Senejko
  • Janusz Jezewski
  • Pawel Popielski
  • Slawomir Wilczynski
  • Robert Koprowski
  • Zygmunt Wrobel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9876)

Abstract

This paper focuses on automatic pattern-based extracting of biometric features where finger-knuckle images are analyzed. Knuckle images are captured by digital camera, and then by the image processing techniques the most relevant features (patterns) are discovered and extracted. Knuckle-based images were filtered by the Hessian filters. It enabled to enhance image regions with image ridges. In the next stage similarity of images were computed by the Normalized Cross-Correlation algorithm. Ultimately, similarities were classified by the k-NN classifier. The discovered features belong to so-called human physical features, which involves innate human characteristics. Physical biometric features can often be gathered with specialized hardware, needing only software for analysis. That capacity makes such biometrics simpler.

We conducted a variety of experiments and showed advantages and disadvantages of the approaches with promising results.

Keywords

Biometrics Finger-Knuckle imaging Cross-correlation k-NN 

References

  1. 1.
    Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Using hand Knuckle texture for biometric identifications. IEEE Aerosp. Electron. Syst. Mag. 21(6), 23–27 (2006)CrossRefGoogle Scholar
  2. 2.
    Iwahori, Y., Hattori, A., Adachi, Y., Bhuyan, M.K., Woodham, R.J., Kasugai, K.: Automatic detection of polyp using Hessian Filter and HOG features. Procedia Comput. Sci. 60(1), 730–739 (2015)CrossRefGoogle Scholar
  3. 3.
    Jin, J., Yang, L., Zhang, X., Ding, M.: Vascular tree segmentation in medical images using Hessian-based multiscale filtering and level set method. Comput. Math. Methods Med. 2013, 502013 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kasprowski, P.: The impact of temporal proximity between samples on eye movement biometric identification. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 77–87. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Koprowski, R., Teper, S.J., Weglarz, B., Wylegała, E., Krejca, M., Wróbel, Z.: Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus. Biomed. Eng. Online 11 (2012)Google Scholar
  6. 6.
    Koprowski, R., Wilczynski, S., Wrobel, Z., Kasperczyk, S., Blonska-Fajfrowska, B.: Automatic method for the dermatological diagnosis of selected hand skin features in hyperspectral imaging. Biomed. Eng. Online 13 (2014)Google Scholar
  7. 7.
    Kumar, A., Ravikanth, C.: Personal authentication using finger Knuckle surface. IEEE Trans. Inf. Forensics Secur. 4(1), 98–110 (2009)CrossRefGoogle Scholar
  8. 8.
    Kumar, A., Wang, B.: Recovering and matching minutiae patterns from finger Knuckle images. Pattern Recogn. Lett. 68, 361–367 (2015)CrossRefGoogle Scholar
  9. 9.
    Kumar, A., Zhou, Y.: Human identification using Knuckle codes. In: Proceedings BTAS 2009, pp. 98–109 (2009)Google Scholar
  10. 10.
    Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10(1), 120–123 (1995)Google Scholar
  11. 11.
    Li, B., Wang, K., Zhang, D.: On-line signature verification based on PCA (Principal Component Analysis) and MCA (Minor Component Analysis). In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS(LNAI, LNBI), vol. 3072, pp. 540–546. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Morales, A., Travieso, C.M., Ferrer, M.A., Alonso, J.B.: Improved finger-Knuckle-print authentication based on orientation enhancement. Electron. Lett. 47(6), 380–382 (2011)CrossRefGoogle Scholar
  13. 13.
    Nakhmani, A., Tannenbaum, A.: A new distance measure based on generalized Image Normalized Cross-Correlation for robust video tracking and image recognition. Pattern Recogn. Lett. 34(3), 315–321 (2013)CrossRefGoogle Scholar
  14. 14.
    Nitsch, J., Klein, J., Miller, D., Sure, U., Hahn, K.H.: Automatic segmentation of the Cerebral Falx and adjacent Gyri in 2D ultrasound images. Bildverarbeitung für die Medizin 2015: Algorithmen - Systeme - Anwendungen, pp. 287–292. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). http://dx.doi.org/10.1109/tsmc.1979.4310076 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pavlidis, T.: A thinning algorithm for discrete binary images. Comput. Graph. Image Process. 13(2), 142–157 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Porwik, P., Doroz, R.: Self-adaptive biometric classifier working on the reduced dataset. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS, vol. 8480, pp. 377–388. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Porwik, P., Doroz, R., Wrobel, K.: A new signature similarity measure. In: 2009 World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, pp. 1022–1027 (2009)Google Scholar
  19. 19.
    Wei, S.D., Lai, S.H.: Fast template matching based on normalized cross correlation with adaptive multilevel winner update. IEEE Trans. Image Process. 17(11), 2227–2235 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Di Stefano, L., Mattoccia, S., Tombari, F.: An algorithm for efficient and exhaustive template matching. In: Campilho, A.C., Kamel, M.S. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 408–415. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Usha, K., Ezhilarasan, M.: Finger Knuckle biometrics - a review. Comput. Electr. Eng. 45, 249–259 (2015)CrossRefGoogle Scholar
  22. 22.
    Woodard, D.L., Flynn, P.J.: Finger surface as a biometric identifier. Comput. Vis. Image Underst. 100(3), 357–384 (2005)CrossRefGoogle Scholar
  23. 23.
    Xiong, M., Yang, W., Sun, C.: Finger-Knuckle-print recognition using LGBP. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part II. LNCS, vol. 6676, pp. 270–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rafal Doroz
    • 1
    Email author
  • Krzysztof Wrobel
    • 1
  • Piotr Porwik
    • 1
  • Hossein Safaverdi
    • 1
  • Michal Senejko
    • 1
  • Janusz Jezewski
    • 2
  • Pawel Popielski
    • 1
  • Slawomir Wilczynski
    • 3
  • Robert Koprowski
    • 1
  • Zygmunt Wrobel
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Institute of Medical Technology and Equipment (ITAM)ZabrzePoland
  3. 3.Department of Basic Biomedical ScienceMedical University of SilesiaSosnowiecPoland

Personalised recommendations