The Matching Method for Rectified Stereo Images Based on Minimal Element Distance and RGB Component Analysis

  • Paweł PopielskiEmail author
  • Robert Koprowski
  • Zygmunt Wróbel
  • Sławomir Wilczyński
  • Rafał Doroz
  • Krzysztof Wróbel
  • Piotr Porwik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9876)


A common problem occurring in medical practice is the localization of veins and arteries. To determine the location of these elements, it is not necessary to have a complete 3D model. A much better solution is preliminary segmentation yielding the contour of veins, and further search for stereo correspondence already in binary images. The computational complexity of this approach is much smaller, which guarantees its fast operation. The disparity matrix is created according to the principle that the most likely correct distance between the same elements in the left and right images is the minimum value. Then, the adjacent RGB components surrounding the elements aspiring to be homologous are analysed. The operation of the method is illustrated on the basis of the authors’ own images as well as standardized images. In addition, its operation was compared with three recognized and widely used algorithms for image matching. The effectiveness of the new method reaches less than 94 % of correctly matched pixels with a standard deviation of 1.5 pixels and operation time of 90 ms.


Disparity Stereo correspondence Stereovision 


  1. 1.
    Shahzad, A., Saad, M., Walter, N., Malik, A., Meriaudeau, F.: A review on subcutaneous veins localization using imaging techniques. In: Current Medical Imaging Reviews, pp. 125–133. Bentham Science Publishers (2014)Google Scholar
  2. 2.
    Mohareb, M.M., Feng, Q., Cantor, W.J., Kingsbury, K.J., Ko, D.T., Wijeysundera, H.C.: Validation of the appropriate use criteria for coronary angiography: a cohort study. Ann. Intern. Med. 162, 549–556 (2015)CrossRefGoogle Scholar
  3. 3.
    Sanchez-Morago, G.-V., Sanchez Coello, M.D., Villafranca Casanoves, A., Cantero Almena, J.M., Migallon Buitrago, M.E., Carrero Caballero, M.C.: Viewing veins with AccuVein AV300. Rev. Enferm. 33, 33–38 (2010)Google Scholar
  4. 4.
    Wójcicka, A., Jędrusik, P., Stolarz, M., Kubina, R., Wróbel, Z.: Using analysis algorithms and image processing for quantitative description of colon cancer cells. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, Volume 3. AISC, vol. 283, pp. 383–392. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Patias, P.: Medical imaging challenges photogrammetry. Virtual Prototyp. Bio Manuf. Med. Appl. 56, 45–66 (2008)CrossRefGoogle Scholar
  6. 6.
    Golec, J., Ziemka, A., Szczygiel, E., Czechowska, D., Milert, A., Kreska-Korus, A., Golec, E.: Photogrametrical analysis body position in hips osteoarthrosis. Ostry Dyur. 5, 1–7 (2012)Google Scholar
  7. 7.
    Golec, J., Tomaszewski, K., Maslon, A., Szczygiel, E., Hladki, W., Golec, E.: The assessment of gait symmetry disorders and chosen body posture parameters among patients with polyarticular osteoarthritis. Ostry Dyur. 6, 91–95 (2013)Google Scholar
  8. 8.
    Mitchell, H.L.: Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote Sens. 50, 27–36 (1995)CrossRefGoogle Scholar
  9. 9.
    D’Apuzzo, N.: Measurement and modeling of human faces from multi images. Int. Arch. Photogramm. Remote Sens. 34(5), 241–246 (2002)Google Scholar
  10. 10.
    D’Apuzzo, N.: Automated photogrammetric measurement of human faces. Int. Arch. Photogramm. Remote Sens. 32(B5), 402–407 (1998)Google Scholar
  11. 11.
    Walczak, M.: 3D measurement of geometrical distortion of synchrotron-based perforated polymer with Matlab algorithm. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2016. AISC, vol. 471, pp. 245–252. Springer, Switzerland (2016)CrossRefGoogle Scholar
  12. 12.
    Bouguet, J.-Y.: Complete Camera Calibration Toolbox for Matlab (1999).
  13. 13.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  14. 14.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference (2002). ISBN: 0130851981Google Scholar
  15. 15.
    Stockman, G., Shapiro, L.G.: Computer Vision, 1st edn. Prentice Hall PTR, Upper Saddle River (2001). ISBN: 0130307963Google Scholar
  16. 16.
    Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2007)Google Scholar
  17. 17.
    Lewis, J.P.: Fast normalized cross-correlation. Vis. Interface 10(1), 120–123 (1995)Google Scholar
  18. 18.
    Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate real-time disparity estimation with variational methods. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Silva, C.T., Coming, D., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 796–807. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Ralli, J., Diaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl. 24, 275–287 (2011)CrossRefGoogle Scholar
  20. 20.
    Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)CrossRefGoogle Scholar
  21. 21.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Conference Computer Vision Pattern Recognition, Proceedings, vol.1, pp. 195–202 (2003)Google Scholar
  22. 22.
    Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  23. 23.
    Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceeding CVPR, pp. 1–8 (2007)Google Scholar
  24. 24.
    Popielski, P., Wrobel, Z., Koprowski, R.: The fast matching algorithm for rectified stereo images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. AISC, vol. 471, pp. 107–118. Springer, Switzerland (2016)CrossRefGoogle Scholar
  25. 25.
    Jedzierowska, M., Wrobel, Z., Koprowski, R.: Imaging of the anterior eye segment in the evaluation of corneal dynamics. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) ITIB 2016. AISC, vol. 471, pp. 63–73. Springer, Switzerland (2016)CrossRefGoogle Scholar
  26. 26.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recogn. 33, 225–236 (2000)CrossRefGoogle Scholar
  27. 27.
    Shafait, F., Keysers, D., Breuel, T.M.: Efficient implementation of local adaptive thresholding techniques using integral images. In: Yanikoglu, B.A., Berkner, K. (eds.) Document Recognition and Retrieval, pp. 1–6. International Society for Optics and Photonics (2008)Google Scholar
  28. 28.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paweł Popielski
    • 1
    Email author
  • Robert Koprowski
    • 1
  • Zygmunt Wróbel
    • 1
  • Sławomir Wilczyński
    • 2
  • Rafał Doroz
    • 1
  • Krzysztof Wróbel
    • 1
  • Piotr Porwik
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Department of Basic Biomedical Science, School of Pharmacy with the Division of Laboratory MedicineMedical University of SilesiaKatowicePoland

Personalised recommendations