Worldwide Marine Fog Occurrence and Climatology

  • Clive E. Dorman
  • John Mejia
  • Darko Koračin
  • Daniel McEvoy
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Herein, an analysis is presented of the world’s marine fog distribution based upon the International Comprehensive Ocean-atmosphere Data Set (ICOADS) ship observations taken during 1950–2007. Fog, shallow fog, and mist are taken from routine weather reports that are encoded in an ICOADS ship observation with the “present weather” code. Occurrence is estimated by the number of observations of a type divided by the total present weather observations in a one-degree area. The bulk of the observations are in the northern temperate and tropical oceans, with decreasing numbers south of 20 °S and large data voids in the polar oceans. Marine fog is infrequent over most of the world’s oceans with the median occurrence 0.2 % while it is in isolated maxima for values larger than about 2 %. In a specific location, either fog or mist are the most frequent, followed with an order of magnitude lower occurrence by shallow fog.

The two major open ocean fog maxima in the world occur on the northwestern side of northern hemisphere oceans during the summer under atmospheric subsidence over a cold polar current. The distribution of the center of the maximum and highest values are over shallow water and follow the shape of the shallow bathymetry. For the highest occurrences, surface air is preconditioned by warming over a western boundary current followed by cooling over a negative SST gradient and stable lower atmosphere suppressing boundary layer exchange with the air above. The horizontal fog structure is set by surface ocean currents, sea surface temperature gradients and seasonal wind direction. Marine fog’s most frequent occurrence and largest areal coverage is in the NW Pacific in June–July–August, reaching its peak value of 59.8 % over the Kuril Islands on the western side of the Ohyashio current. The second largest marine fog maximum occurrence is in the NW Atlantic in June–July–August, reaching 45.0 % over the Grand Banks and the Labrador Current. The eastward extent of both of the NW ocean maxima is determined by the sub-polar ocean gyre.

Wind driven coastal ocean upwelling regions have a narrow zone of fog located against the coast, over the inner shelf and over the sea surface temperature minimum along the coast. A mist maximum occurs in a broader area beyond the temperature minimum. The lowest fog occurrence is in the cold season and the highest is in the warm season for all five areas except SW Africa which has its maximum in March–April–May. SW Africa has the highest single grid point fog occurrence and its upwelling, which lasts all year, and fog maximum, are both divided into two, separate areas. California–Oregon has the greatest along coast extent of fog occurrence and SST minimum as well at the lowest SST minimum. NW Africa, and Peru have significantly less fog occurrence, a shorter extent along coast of fog and a higher minimum SST. For all of the wind driven coastal upwelling zones, the Arabian Peninsula has the least fog occurrence, the shortest along coast extent as well as the highest SST minimum.

Significant fog and mist occurs at mid-latitudes in marginal seas and along the western side of northern hemisphere oceans. Over the NW Pacific, fog occurrence average of the 5 highest grid point values in the Sea of Okhotsk is 51 % in June–July–August, in the Japan Sea it is 27 % in June–July–August and the Yellow Sea it nears 15 % during March–April–May and June–July–August. The greatest fog and mist occurs along the southern China coast in December–January–March and March–April–May when the average of the 5 highest values are between 4 % and 6 %. On the NW Atlantic along the NE United States and Canada fog is most prevalent in June–July–August and least in December–January–February. During June–July–August, an elevated fog occurrence over the shelf extends along the coast from Cape Cod to SW Labrador that includes a maximum centered off the SE tip of Nova Scotia where the average of the five highest fog grid point occurrences is 41 %. The Nova Scotia maximum center is separate from that over the Grand Banks.

On the NE Atlantic appreciable fog and mist occurs around the N. European coastline in all seasons. In the North Sea, the average of the fog 5 highest grid point occurrences is greatest in March–April–May (8 %) and least in September–October–November (4 %). For the Baltic Sea, the average of the five highest fog grid point occurrences is most in March–April–May (15 %), and least is in September–October–November (6 %).

The polar seas have their greatest fog and mist occurrences during the warm season and the least during the cold season. The transitional seasons appear to have intermediate fog and mist values around the periphery while the interior is largely unsampled. Observations are mostly limited to the warm season, distributed unevenly and with vast areal data voids.

There are significant fog occurrence climate trend increases tested at the 0.05 significance level for June–July–August based upon the 1950–2007 record in three areas with high numbers of ship observations. The open ocean Kuril Island maximum occurrence in NW Pacific increased by 15.8 % and the Grand Banks maximum in the NW Atlantic increased by 12.8 %. The sea surface temperature (SST) over the same area and same period also increased which is consistent with published SST increases in the adjacent western boundary currents in both oceans. The third case is the increase of 7.4 % of the fog occurrence maximum along the California–Oregon coast over wind driven upwelling water. In contrast to the NW Ocean maximums, this coastal fog maximum is associated with a long term SST decrease.


Kuril Island Cape Town International Airport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support for the writing of this chapter was provided by the Department of Energy grant DE-SC0001933.


  1. Alexander, L. L. (1964). Tidal effects in the dissipation of haar. Meteorological Magazine, 93, 379–380.Google Scholar
  2. Avotniece, Z., & Kļaviņš, M. (2013). Temporal and spatial variation of fog in Latvia. In: International scientific conference “Environmental and Climate Technologies 2013”: Conference proceedings, Latvia, Rīga, 14–16 October, 2013, Riga: RTU Press, pp. 5–10. ISBN 978-9934-10-510-4.Google Scholar
  3. Avotniece, Z., & Klavins, M. (2014). Fog climatology in Latvia. Theoretical and Applied Climatology, 122(1), 97–109. doi: 10.1007/s00704-014-1270-4.Google Scholar
  4. Baars, J. A., Witiw, M., & Al-Habash, A. (2003). Determining fog type in the Los Angeles basin using historic surface observation data. In: Proceedings 16th conference on probability and statistics in the atmospheric sciences, Long Beach, CA. American Meteor Society, Ltd., CD-ROM, J3.8.Google Scholar
  5. Bakun, A., & Nelson, C. S. (1991). The seasonal cycle of wind stress curl in subtropical eastern boundary current regions. Journal of Physical Oceanography, 21, 1815–1834.CrossRefGoogle Scholar
  6. Bari, D., Bergot, T., & El Khlifi, M. (2015). Numerical study of a coastal fog event over Casablanca, Morocco. Quarterly Journal of the Royal Meteorological Society, 141, 1894–1905. doi: 10.1002/qj.2494.CrossRefGoogle Scholar
  7. Bendix, J. (2002). A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas. Atmospheric Research, 64, 3–18.CrossRefGoogle Scholar
  8. Byun, H.-R., Lee, D.-G., & Lee, H.-W. (1997). Analysis on the characteristics and predictability of the marine fog over and near the East Sea. Journal of the Korean Meteorological Society, 33, 41–62.Google Scholar
  9. Cereceda, P., & Schemenauer, R. S. (1991). The occurrence of fog in Chile. Journal of Applied Meteorology, 30, 1097–1105.CrossRefGoogle Scholar
  10. Cermak, J. (2012). Low clouds and fog along the South-Western African coast—Satellite-based retrieval and spatial patterns. Atmospheric Research, 116, 15–21.CrossRefGoogle Scholar
  11. Chapman, D. C., & Beardsley, R. C. (1989). On the origin of shelf water in the Middle Atlantic Bight. Journal of Physical Oceanography, 19, 384–391. doi: 10.1175/1520-0485(1989)019<0384:OTOOSW>2.0.CO;2.CrossRefGoogle Scholar
  12. Charifi, G., & Nait Said, Z. (2011). Brouillard ‘a Nouasseur: Climatologie et mod’elisation statistique par les r’eseaux neurones (Final Engineer Formation Report). Casablanca, Morocco: EHTP (Ecole Hassania des Travaux Publics).Google Scholar
  13. Chavez, F. P., & Messié, M. (2009). A comparison of eastern boundary upwelling ecosystems. Progress in Oceanography, 83(1–4), 80–96. doi: 10.1016/j.pocean.2009.07.032.CrossRefGoogle Scholar
  14. Cho, Y. K., Kim, M. O., & Kim, B. C. (2000). Sea fog around the Korean peninsula. Journal of Applied Meteorology, 39, 2473–2479.CrossRefGoogle Scholar
  15. Combs, C. L., Blier, W., Strach, W., & DeMaria, M. (2004). Exploring the timing of fog formation and dissipation over San Francisco Bay area using satellite cloud composites. Preprints, 13th conference satellite meteorology and oceanography, Norfolk, VA. American Meteor Society, Ltd., P4.12.Google Scholar
  16. Croft, P.J., & Burton, A.N. (2006). Fog during the 2004–2005 winter season in the northeastern mid-Atlantic states: spatial characteristics and behaviors as a function of synoptic weather types. Preprint, 12th conference on aviation, range and aerospace, Atlanta, GA, 29 January–2 February, 2006, 13p.Google Scholar
  17. Dashko, N.A., & Varlamov, S.M. (2003). Meteorology and climate. In: Hydrometeorology and hydrochemistry of seas (Vol. VIII, pp. 18–102). Japan Sea. Issue 1: Hydrometeorological conditions, Part 2, Sankt – Petersburg, Hydrometeoizdat Press, 2003, 399p. In Russian.Google Scholar
  18. Dashko, N. A., & Yudin, K. B. (1998). Meteorological regime. In: Hydrometeorology and hydrochemistry of seas (Vol. IX, pp. 25–75). Okhotsk Sea. Issue 1: Hydrometeorological conditions, Part 2, Sankt – Petersburg, Hydrometeoizdat Press, 1998, 342p. In Russian.Google Scholar
  19. De La Fuente, L., Delage, Y., Desjardins, S., MacAfee, A., Pearson, G., & Ritchie, H. (2007). Can sea fog be inferred from operational GEM forecast fields? Pure and Applied Geophysics, 164, 1303–1325. doi: 10.1007/s00024-007-0220-9.CrossRefGoogle Scholar
  20. De Villiers, M. P., & van Heerden, J. (2007). Fog at Abu Dhabi International Airport. Weather, 62, 209–214.CrossRefGoogle Scholar
  21. Dorman, C. E., Armi, L., Bane, J. M., & Rogers, D. P. (1998). Sea surface mixed layer during the June 10–11, 1994 California coastally trapped event. Monthly Weather Review, 126, 600–619.CrossRefGoogle Scholar
  22. Dorman, C. E., Beardsley, R. C., Dashko, N. A., Friehe, C. A., Kheilf, D., Cho, K., et al. (2004). Winter atmospheric conditions over the Japan Sea. Journal of Geophysical Research, 109, C12011. doi: 10.1029/2001JC001197.CrossRefGoogle Scholar
  23. Dorman, C. E., Beardsley, R. C., Limeburner, R., Varlamov, S. M., Caruso, M., & Dashko, N. A. (2005). Summer atmospheric conditions over the Japan Sea. Deep-Sea Research, 52, 1393–1420.CrossRefGoogle Scholar
  24. Dorman, C. E., Holt, T., Rogers, D. P., & Edwards, K. (2000). Large-scale structure of the June–July 1996 marine boundary layer along California and Oregon. Monthly Weather Review, 128, 1632–1652.CrossRefGoogle Scholar
  25. Dorman, C. E., & Koračin, D. (2008). Interaction of the summer marine layer with an extreme California coastal bend. Monthly Weather Review, 136, 2894–2922.CrossRefGoogle Scholar
  26. Dorman, C. E., Mejia, J., & Koračin, D. (2013). Impact of US west coastline inhomogeneity and synoptic forcing on winds, wind stress and wind stress curl during upwelling season. Journal of Geophysical Research: Oceans, 118(9), 4036–4051. doi: 10.1002/jgrc.20282.Google Scholar
  27. Dorman, C. E., Rogers, D. P., Nuss, W., & Thompson, W. T. (1999). Adjustment of the summer marine boundary layer around Pt. Sur, California. Monthly Weather Review, 127, 2143–2159.CrossRefGoogle Scholar
  28. Dorman, C. E., & Winant, C. D. (1995). Buoy observations of the atmosphere along the west coast of the United States, 1981–1990. Journal of Geophysical Research, 100, 16029–16044.CrossRefGoogle Scholar
  29. Du, J., & Zhou, B. (2017). Ensemble fog prediction (Chap. 10). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting (p. 537). New York: Springer.Google Scholar
  30. Filonczuk, M. K., Cayan, D. R., & Riddle, L. G. (1995). Variability of marine fog along the California coast (Report 95-2). La Jolla, CA: Scripps Institution of Oceanography, 91p.Google Scholar
  31. Findlater, J., Roach, W. T., & McHugh, B. C. (1989). The haar of north-east Scotland. Quarterly Journal of the Royal Meteorological Society, 115, 581–608.CrossRefGoogle Scholar
  32. Fitzgerald, J. W. (1978). A numerical model of the formation of droplet spectra in advection fogs at sea and its applicability to fogs off Nova Scotia. Journal of the Atmospheric Sciences, 35, 1522–1535.CrossRefGoogle Scholar
  33. FMH-1. (2005). Federal Meteorological Handbook No. 1 surface weather observations and reports. Retrieved from
  34. Fréon, P., Barrange, M., & Aristegui, J. (2009). Eastern boundary upwelling ecosystems: Integrative and comparative approaches. Progress in Oceanography, 83, 1–14.CrossRefGoogle Scholar
  35. Fu, G., Li, P., Crompton, J. G., Guo, J., Gao, S., & Zhang, S. (2010). An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteorology and Atmospheric Physics, 107, 149–159.CrossRefGoogle Scholar
  36. Garreaud, R., Barichivich, J., Christie, D. A., & Maldonado, A. (2008). Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. Journal of Geophysical Research, 113, G04011. doi: 10.1029/2008JG000709.CrossRefGoogle Scholar
  37. Garret, C. J. R., & Loucks, H. (1976). Upwelling along the Yarmouth shore of Nova Scotia. Journal of the Fisheries Research Board of Canada, 33, 116–117. doi: 10.1139/f76-013.CrossRefGoogle Scholar
  38. Gibbons, J. D., & Chakraborti, S. (2010). Nonparametric statistical inference. Boca Raton: CRC Press. ISBN 978-1420077612.Google Scholar
  39. Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York: Wiley. ISBN 0-471-28878-0.Google Scholar
  40. Guo, J., Li, P., Fu, G., Zhang, W., Gao, S., & Zhang, S. (2015). The structure and formation mechanism of sea fog over the Yellow Sea. Journal of Ocean University of China, 14, 27–37. doi: 10.1007/s11802-015-2446-7.CrossRefGoogle Scholar
  41. Gultepe, I., Milbrandt, J. A., & Zhou, B. (2017). Marine fog: A review on microphysics and visibility prediction (Chap. 7). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting (p. 537). New York: Springer.Google Scholar
  42. Gutiérrez, A. G., Barbosa, O., Christie, D. A., del-Val, E., Ewing, H. A., Jones, C. G., et al. (2008). Regeneration patterns and persistence of the fog-dependent Fray Jorge forest in semiarid Chile during the past two centuries. Global Change Biology, 14, 161–176. doi: 10.1111/j.1365-2486.2007.01482x.Google Scholar
  43. Han, G., Lu, Z., Wang, Z., Helbig, J., Chen, N., & de Young, B. (2008). Seasonal variability of the Labrador current and shelf circulation off Newfoundland. Journal of Geophysical Research, Oceans, 113, C10013. doi: 10.1029/2007JC004376.CrossRefGoogle Scholar
  44. Han, G., Ma, Z., DeYoung, B., Foreman, M., & Chen, N. (2011). Simulation of three-dimensional circulation and hydrography over the Grand Banks of Newfoundland. Ocean Modelling, 40, 199–210.CrossRefGoogle Scholar
  45. Hansen, B., Gultepe, I., King, P., Toth, G., & Mooney, C. (2007). Visualization of seasonal-diurnal climatology of visibility in fog and precipitation at Canadian airports. 16th Conference on applied climatology, 87th annual meeting of the American meteorological society, San Antonio, Texas, 14–18 January 2007. Retrieved from
  46. Harrison, S. J., & Phizacklea, A. P. (1985). Tide and the climatology of fog occurrence in the Forth estuary. Scottish Geographical Magazine, 101, 28–36. doi: 10.1080/00369228518736609.CrossRefGoogle Scholar
  47. Hastenrath, S. (1985). Climate and circulation of the tropics. Dordrecht: Reidel. 455p.CrossRefGoogle Scholar
  48. Huang, H., Liu, H., Huang, J., Mao, W., & Bi, X. (2015). Atmospheric boundary layer structure and turbulence during sea fog on the southern China coast. Monthly Weather Review, 143, 1907–1923. doi: 10.1175/MWR-D-14-00207.1.CrossRefGoogle Scholar
  49. Johnstone, J. A., & Dawson, T. E. (2010). Climatic context and ecological implications of summer fog decline in the coast redwood region. PNAS, 107, 4533–4538. doi: 10.1073/pnas.0915062107.CrossRefGoogle Scholar
  50. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  51. Kim, C. K., & Yum, S. S. (2010). Local meteorological and synoptic characteristics of the fogs formed over Incheon International Airport in the west coast of Korea. Advances in Atmospheric Sciences, 27, 761–776.CrossRefGoogle Scholar
  52. Kim, C. K., & Yum, S. S. (2017). Turbulence in marine fog (Chap. 4). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling, and forecasting (p. 537). New York: Springer.Google Scholar
  53. Kim, C. K., & Yum, S. S. (2017). Radiation in marine fog (Chap. 5). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting (p. 537). New York: Springer.Google Scholar
  54. Koračin, D. (2017). Modeling and forecasting marine fog (Chap. 9). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling and forecasting (p. 537). New York: Springer.Google Scholar
  55. Koračin, D., Businger, J. A., Dorman, C. E., & Lewis, J. M. (2005). Formation, evolution, and dissipation of coastal sea fog. Boundary-Layer Meteorology, 117, 447–478.CrossRefGoogle Scholar
  56. Koračin, D., Dorman, C. E., Lewis, J. M., Hudson, J. G., Wilcox, E. M., & Torregrosa, A. (2014). Marine fog: A review. Atmospheric Research, 143, 142–175. doi: 10.1016/j.atmosres.12.012.CrossRefGoogle Scholar
  57. Koračin, D., Dorman, C. E., & Dever, E. P. (2004). Coastal perturbations of marine layer winds, wind stress, and wind stress curl along the California and Baja California in June 1999. Journal of Physical Oceanography, 34, 1152–1173. doi: 10.1175/1520-0485(2004)034<1152:CPOMWW>2.0.CO;2.CrossRefGoogle Scholar
  58. Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., & Businger, J. A. (2001). Transition of stratus into fog along the California coast: Observations and Modeling. Journal of the Atmospheric Sciences, 58, 1714–1731. doi: 10.1175/1520-0469(2001)058<1714:TOSIFA>2.0.CO;2.CrossRefGoogle Scholar
  59. LaDochy, S. (2005). The disappearance of dense fog in Los Angeles: Another urban impact? Physical Geography, 26(3), 177–191. doi: 10.2747/0272-3646.26.3.177.CrossRefGoogle Scholar
  60. LaDochy, S., & Witiw, M. (2012). The continued reduction in dense fog in Southern California region: Possible causes. Pure and Applied Geophysics, 169, 1157–1163. doi: 10.1007/s00024-011-0366-3.CrossRefGoogle Scholar
  61. Lamb, H. H. (1943). Haars or North Sea fogs on the coasts of Great Britain. Meteorological Office, M.0.504.Google Scholar
  62. Larraın, H., Velásquez, F., Cereceda, P., Espejo, R., Pinto, R., Osses, P., et al. (2002). Fog measurements at the site Falda Verde north of Chañaral compared with other fog stations of Chile. Atmospheric Research, 64, 273–284. doi: 10.1016/S0169-8095(02)00098-4.CrossRefGoogle Scholar
  63. Lee, J. S., Johnson, D. R., & Boyer, T. P. (2012). East Asian Seas regional climatology (preliminary version). National Oceanographic Data Center, National Oceanic and Atmospheric Administration, USA, and National Fisheries Research and Development Institute, Republic of Korea. Retrieved from
  64. Lee, Y. H., Lee, J.-S., Park, S. K., Chang, D.-E., & Lee, H.-S. (2010). Temporal and spatial characteristics of fog occurrence over the Korean Peninsula. Journal of Geophysical Research, 115, D14117. doi: 10.1029/2009JD012284.CrossRefGoogle Scholar
  65. Leipper, D. F. (1948). Fog development at San Diego, California. Journal of Marine Research, 7, 337–346.Google Scholar
  66. Leipper, D. F. (1994). Fog on the U.S. West coast: A review. Bulletin of the American Meteorological Society, 75, 229–240. doi: 10.1175/1520-0477(1994)075<0229:FOTUWC>2.0.CO;2.CrossRefGoogle Scholar
  67. Leipper, D. F. (1995). Fog forecasting objectively in the California coastal area using LIBS. Weather and Forecasting, 10, 741–761.CrossRefGoogle Scholar
  68. Lekouch, I., Lekouch, K., Muselli, M., Mongruel, A., Kabbachi, B., & Beysens, D. (2012). Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. Journal of Hydrology, 448–449, 60–72.CrossRefGoogle Scholar
  69. Lewis, J., Koračin, D., Rabin, R., & Businger, J. (2003). Sea fog off the California coast: Viewed in the context of transient weather systems. Journal of Geophysical Research, 108, 4457. doi: 10.1029/2002JD002833.CrossRefGoogle Scholar
  70. Lewis, J. M., Koračin, D., & Redmond, K. T. (2004). Sea fog research in the United Kingdom and United States: A historical essay including outlook. Bulletin of the American Meteorological Society, 85, 395–408. doi: 10.1175/BAMS-85-3-395.CrossRefGoogle Scholar
  71. Li, P., Fu, G., Lu, C., Fu, D., & Wang, S. (2012). The formation mechanism of a Spring Sea fog event over the Yellow Sea associated with a low-level jet. Weather and Forecasting, 27, 1538–1553. doi: 10.1175/WAF-D-11-00152.1.CrossRefGoogle Scholar
  72. Lindskog, E. (1931). On the geographical distribution of fog in Sweden. Geografiska Annaler, 13, 1–94.CrossRefGoogle Scholar
  73. Locarnini, R. A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., & Garcia, H.E. (2006). World Ocean Atlas 2005. In: S. Levitus (Ed.) NOAA Atlas NESDIS 61. Volume 1: Temperature. Washington, DC: U.S. Government Printing Office, 182p. Retrieved from
  74. Lundquist, J. (1999). California and Oregon humidity and coastal fog: A study of summer 1996. SIO Reference No. 99–17, 89p.Google Scholar
  75. Mack, E. J., & Katz, U. (1976). The characteristics of marine fog occurrence off the coast of Nova Scotia. National Technical Information Service. (NTIS Accession Number AD-A027 379/7. NTIS Issue Number 197620). Retrieved from
  76. Marzol, M. V., & Megía, J. L. S. (2008). Fog water harvesting in Ifni, Morocco. An assessment of potential and demand. Die Erde, 139, 97–119. Retrieved from
  77. Marzol, M. V., Sánchez, J. L., & Yanes, A. (2011). Meteorological patterns and fog water collection in Morocco and the Canary Islands. Erdkunde, 65, 291–303. Scholar
  78. Mesias, J. M., Bisagni, J. J., & Brunner, A.-M. E. G. (2007). A high-resolution satellite-derived sea surface temperature climatology for the western North Atlantic Ocean. Continental Shelf Research, 27, 191–207. doi: 10.1016/j.csr.2006.10.002.CrossRefGoogle Scholar
  79. Mittelstaedt, E. (1991). The ocean boundary along the northwest African coast: Circulation and oceanographic properties at the sea surface. Progress in Oceanography, 26, 307–355. doi: 10.1016/0079-6611(91)90011-A.CrossRefGoogle Scholar
  80. Noonkester, V. R. (1979). Coastal marine fog in southern California. Monthly Weather Review, 107, 830–850. doi: 10.1175/1520-0493(1979)107<0830:CMFISC>2.0.CO;2.CrossRefGoogle Scholar
  81. Nurminen, A. (1957). Unexpected occurrence of fog. Geophysica, 551.575.5 Finnish Meteorological Office, Helsinki. Retrieved from
  82. O’Brien, T. A. (2011). The recent past and possible future decline of California coastal fog. Ph.D. thesis, University of California, Santa Cruz. Retrieved from
  83. O’Brien, T. A., Sloan, L. C., Chuang, P. Y., Faloona, I. C., & Johnstone, J. A. (2013). Multidecadal simulation of coastal fog with a regional climate model. Climate Dynamics, 40, 2801–2812. doi: 10.1007/s00382-012-1486-x.CrossRefGoogle Scholar
  84. Olivier, J., & Stockton, P. L. (1989). The influence of upwelling extent upon fog incidence at Lüderitz, southern Africa. International Journal of Climatology, 9, 69–75. doi: 10.1002/joc.3370090106.CrossRefGoogle Scholar
  85. Olivier, J., & Van Heerden, J. (1999). The South African fog water collection project. Water Research Commission Rep. 671/1/99, 149p. Retrieved from Library and Publications Division, Private Bag X03, Gezina 0031, South Africa.Google Scholar
  86. Pilié, R. J., Mack, E. J., Rogers, C. W., Katz, U., & Kocmond, W. C. (1979). The formation of marine fog and the development of fog-stratus systems along the California coast. Journal of Applied Meteorology and Climatology, 18, 1275–1286. doi: 10.1175/1520-0450(1979)018<1275:TFOMFA>2.0.CO;2.CrossRefGoogle Scholar
  87. Ramage, C. S. (1971). Monsoon meteorology. New York: Academic. 296p.Google Scholar
  88. Rao, R. R., & Sivakumar, R. (2000). Seasonal variability of near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. Journal of Geophysical Research, 105, 985–1015.CrossRefGoogle Scholar
  89. Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407. doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  90. Ricks E. L. (1981). Some empirical rules for forecasting fog and Stratus over northern Florida, southern Georgia and adjacent coastal waters. National Hurricane Center, Miami, Florida. (NOAA Technical Memorandum NWS SR-104). Retrieved from
  91. Riehl, H. (1979). Climate and weather in the tropics. New York: Academic. 613p. ISBN 0-12-588180-0.Google Scholar
  92. Sarukhanian, E. I., & Walker, J. M. (n.d.). The International Meteorological Organization (IMO) 1879–1950. Retrieved from
  93. Schemenauer, R. S., & Cerecda, S. P. (1993). Meteorological conditions at a coastal fog collection site in Peru. Atmosfera, 6, 175–188.Google Scholar
  94. Schemenauer, R. S., Fuenzalida, H., & Cereceda, P. (1988). A neglected water resource: The Camanchaca of South America. Bulletin of the American Meteorological Society, 69, 138–147. doi: 10.1175/1520-0477(1988)069<0138:ANWRTC>2.0.CO;2.CrossRefGoogle Scholar
  95. Schnell, R. C. (1977). Ice nuclei in seawater, fog water and marine air off the coast of Nova Scotia: Summer 1975. Journal of the Atmospheric Sciences, 34, 1299–1305. doi: 10.1175/1520-0469(1977)034<1299:INISFW>2.0.CO;2.CrossRefGoogle Scholar
  96. Schott, F. A., & McCreary, J. P., Jr. (2001). The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51, 1–123. doi: 10.1016/S0079-6611(01)00083-0.CrossRefGoogle Scholar
  97. Seo, H., Brink, K. H., Dorman, C. E., Koračin, D., & Edwards, C. A. (2012). What determines the spatial pattern in summer upwelling trends on the U.S. West coast? Journal of Geophysical Research, Oceans, 117, C08012. doi: 10.1029/2012JC008016.Google Scholar
  98. Slutz, R. J., Lubker, S. J., Hiscox, J. D., Woodruff, S. D., Jenne, R. L., Joseph, D. H., Steurer, P. M., & Elms, J. D. (1985). Comprehensive Ocean-Atmosphere Data Set; Release 1. NOAA Environmental Research Laboratories, Climate Research Program, Boulder, CO, 268p (NTIS PB86-105723). Retrieved from
  99. Smith, R. L. (1968). Upwelling. Oceanography and Marine Biology: An Annual Review, 6, 11–46.Google Scholar
  100. Spink, P. C. (1945). Incidence of haar at Rattray. Unpublished paper. Copy available in the National Meteorological Library, Bracknell.Google Scholar
  101. Sugimoto, S., Sato, T., & Nakamura, K. (2013). Effects of synoptic-scale control on long‐term declining trends of summer fog frequency over the pacific side of Hokkaido Island. Journal of Applied Meteorology and Climatology, 52, 2226–2242. doi: 10.1175/JAMC-D-12-0192.1.CrossRefGoogle Scholar
  102. Tardif, R., & Rasmussen, R. M. (2007). Event-based climatology and typology of fog in the New York City region. Journal of Applied Meteorology and Climatology, 46, 1141–1168. doi: 10.1175/JAM2516.1.CrossRefGoogle Scholar
  103. Tardif, R., & Rasmussen, R. M. (2008). Process-oriented analysis of environmental conditions associated with precipitation fog events in the New York City region. Journal of Applied Meteorology and Climatology, 47, 1681–1703. doi: 10.1175/2007JAMC1734.1.CrossRefGoogle Scholar
  104. Taylor, G. I. (1917). The formation of fog and mist. Quarterly Journal of the Royal Meteorological Society, 43, 241–268. doi: 10.1002/qj.49704318302.CrossRefGoogle Scholar
  105. Tchernia, P. (1980). Descriptive regional oceanopgraphy. Oxford: Pergamon Press. 253p. ISBN 0-08-020925-4.Google Scholar
  106. Telford, J., & Chai, S. (1984). Inversions and fog, stratus and cumulus formation in warm air over cooler water. Boundary-Layer Meteorology, 29, 109–137. doi: 10.1007/BF00206826.CrossRefGoogle Scholar
  107. Telford, J. W., & Chai, S. K. (1993). Marine fog and its dissipation over warm water. Journal of the Atmospheric Sciences, 50, 3336–3349. doi: 10.1175/1520-0469(1993)050<3336:MFAIDO>2.0.CO;2.CrossRefGoogle Scholar
  108. Thompson, W. T., Burk, S. D., & Lewis, J. (2005). Fog and low clouds in a coastally trapped disturbance. Journal of Geophysical Research, 110, D18213. doi: 10.1029/2004JD005522.CrossRefGoogle Scholar
  109. Tokinaga, H., & Xie, S.-P. (2009). Ocean tidal cooling effect on summer sea fog over the Okhotsk Sea. Journal of Geophysical Research, 114, D14102. doi: 10.1029/2008JD011477.CrossRefGoogle Scholar
  110. Tomczak, M., & Godfrey, J. S. (2003). Regional oceanography: An introduction. Delhi: Daya Publications. ISBN 8170353068.Google Scholar
  111. Torregrosa, A., O’Brien, T. A., & Faloona, I. C. (2014). Coastal fog, climate change, and the environment. Eos, Transactions of the American Geophysical Union, 95(50), 473. doi: 10.1002/2014EO500001.CrossRefGoogle Scholar
  112. Van Schalkwyk, L., & Dyson, L. L. (2013). Climatological characteristics of fog at Cape Town International Airport. Weather and Forecasting, 28, 631–646. doi: 10.1175/WAF-D-12-00028.1.CrossRefGoogle Scholar
  113. Wang, B. (1985). Sea fog. Beijing: China Ocean Press. 330p.Google Scholar
  114. Wang, X. L. (2006). Climatology and trends in some adverse and fair weather conditions in Canada, 1953–2004. Journal of Geophysical Research, 111, D09105. doi: 10.1029/2005JD006155.Google Scholar
  115. Winant, C. D., Dorman, C. E., Friehe, C. A., & Beardsley, R. C. (1988). The marine layer off northern California: An example of supercritical channel flow. Journal of the Atmospheric Sciences, 45, 3588–3605. doi: 10.1175/1520-0469(1988)045<3588:TMLONC>2.0.CO;2.CrossRefGoogle Scholar
  116. Witiw, M., & LaDochy, S. (2008). Trends in fog frequencies in the Los Angeles basin. Atmospheric Research, 87, 293–300. doi: 10.1016/j.atmosres.2007.11.010.CrossRefGoogle Scholar
  117. Woodruff, S. D., Diaz, H. F., Worley, S. J., Reynolds, R. W., & Lubker, S. J. (2005). Early ship observational data and ICOADS. Climatic Change, 73, 169–194. doi: 10.1007/s10584-005-3456-3.CrossRefGoogle Scholar
  118. Woodruff, S. D., Slutz, R. J., Jenne, R. L., & Steurer, P. M. (1987). A Comprehensive Ocean-Atmosphere Data Set. Bulletin of the American Meteorological Society, 68, 1239–1250. doi: 10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2.CrossRefGoogle Scholar
  119. World Meteorological Organization. (1994). Guide to the applications of marine climatology WMO – No. 781, 1944, Geneva, Switzerland. Secretariat of the WMO, 157p. Retrieved from
  120. World Meteorological Organization. (n.d. a.). World Weather Records (WWR). Retrieved from
  121. World Meteorological Organization. (n.d. b.). The Voluntary Observing Ship (VOS) scheme. Retrieved from
  122. Worley, S. J., Woodruff, S. D., Reynolds, R. W., Lubker, S. J., & Lott, N. (2005). ICOADS release 2.1 data and products. International Journal of Climatology (CLIMAR-II Special Issue), 25, 823–842. doi: 10.1002/joc.1166.CrossRefGoogle Scholar
  123. Wu, L., Cai, W., Zhang, L., Nakamura, H., Timmermann, A., Joyce, T., et al. (2012). Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2012(2), 161–166. doi: 10.1038/nclimate1353.CrossRefGoogle Scholar
  124. Yang, D., Ritchie, H., Desjardins, S., Pearson, G., MacAfee, A., & Gultepe, I. (2010). High-resolution GEM-LAM application in marine fog prediction: Evaluation and diagnosis. Weather and Forecasting, 25, 727–748. doi: 10.1175/2009WAF2222337.1.CrossRefGoogle Scholar
  125. Zhang, S., & Lewis, J. M. (2017). Synoptic processes (Chap. 6). In D. Koračin & C. E. Dorman (Eds.), Marine fog: Challenges and advancements in observations, modeling, and forecasting (p. 537). New York: Springer.Google Scholar
  126. Zhang, S.-P., Xie, S.-P., Liu, Q.-L., Yang, Y.-Q., Wang, X.-G., & Ren, Z.-P. (2009). Seasonal variations of Yellow Sea fog: Observations and mechanisms. Journal of Climate, 22, 6758–6772. doi: 10.1175/2009JCLI2806.1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Clive E. Dorman
    • 1
    • 2
  • John Mejia
    • 3
  • Darko Koračin
    • 4
    • 5
  • Daniel McEvoy
    • 6
  1. 1.Integrative Oceanography Division, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Geological SciencesSan Diego State UniversitySan DiegoUSA
  3. 3.Department of Atmospheric SciencesDesert Research InstituteRenoUSA
  4. 4.Faculty of Science, Department of PhysicsUniversity of SplitSplitCroatia
  5. 5.Department of Atmospheric SciencesDesert Research InstituteRenoUSA
  6. 6.Western Regional Climate CenterDesert Research InstituteRenoUSA

Personalised recommendations