High-Performance Symbolic Parameter Synthesis of Biological Models: A Case Study

  • Martin Demko
  • Nikola Beneš
  • Luboš Brim
  • Samuel Pastva
  • David ŠafránekEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)


Complex behaviour arising in biological systems is described by highly parameterised dynamical models. Most of the parameters are mutually dependent and therefore it is hard and computationally demanding to find admissible parameter values with respect to hypothesised constraints and wet-lab measurements. Recently, we have developed several high-performance techniques for parameter synthesis that are based on parallel coloured model checking. These methods allow to obtain parameter values that guarantee satisfaction of a given set of dynamical properties and parameter constraints. In this paper, we review the applicability of our techniques in the context of biological systems. In particular, we provide an extended analysis of a genetic switch controlling the regulation in mammalian cell cycle phase transition and a synthetic pathway for biodegradation of a toxic pollutant in E. coli.


Model Check Atomic Proposition Parameter Synthesis Statistical Model Check Computational Tree Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ballarini, P., Guido, R., Mazza, T., Prandi, D.: Taming the complexity of biological pathways through parallel computing. Brief. Bioinform. 10(3), 278–288 (2009)CrossRefGoogle Scholar
  2. 2.
    Barnat, J., et al.: On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 693–705 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Technical report, Department of Computer Science, The University of Iowa (2015)Google Scholar
  4. 4.
    Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016)CrossRefGoogle Scholar
  5. 5.
    Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23(18), 2415–2422 (2007)CrossRefGoogle Scholar
  7. 7.
    Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Parallel SMT-based parameter synthesis with application to piecewise multi-affine systems. In: ATVA 2016. LNCS. Springer (2016) (to appear)Google Scholar
  8. 8.
    Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.: Abstraction-based parameter synthesis for multiaffine systems. In: Piterman, N., et al. (eds.) HVC 2015. LNCS, vol. 9434, pp. 19–35. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 251–263. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)CrossRefGoogle Scholar
  11. 11.
    Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis through temporal logic specifications. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 213–230. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  12. 12.
    Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE 6(9), e24246 (2011)CrossRefGoogle Scholar
  13. 13.
    Dvořák, P.: Engineering of the synthetic metabolic pathway for biodegradation of environmental pollutant. Ph.D. thesis, Masaryk University (2014)Google Scholar
  14. 14.
    Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Kurumbang, N.P., et al.: Computer-assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth. Biol. 3(3), 172–181 (2013)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic optimization with SMT solvers. In: POPL 2014, pp. 607–618. ACM (2014)Google Scholar
  18. 18.
    Madsen, C., Shmarov, F., Zuliani, P.: BioPSy: an SMT-based tool for guaranteed parameter set synthesis of biological models. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 182–194. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  19. 19.
    Raue, A., et al.: Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics 30, 1440–1448 (2014)CrossRefGoogle Scholar
  20. 20.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)CrossRefGoogle Scholar
  21. 21.
    Swat, M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)CrossRefGoogle Scholar
  22. 22.
    Yordanov, B., Belta, C.: Parameter synthesis for piecewise affine systems from temporal logic specifications. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 542–555. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Martin Demko
    • 1
  • Nikola Beneš
    • 1
  • Luboš Brim
    • 1
  • Samuel Pastva
    • 1
  • David Šafránek
    • 1
    Email author
  1. 1.Systems Biology Laboratory, Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations