E-Cyanobacterium.org: A Web-Based Platform for Systems Biology of Cyanobacteria

  • Matej Troják
  • David Šafránek
  • Jakub Hrabec
  • Jakub Šalagovič
  • Františka Romanovská
  • Jan Červený
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)


E-cyanobacterium.org is an online platform providing tools for public sharing, annotation, analysis, and visualization of dynamical models and wet-lab experiments related to cyanobacteria. The platform is unique in integrating abstract mathematical models with a precise consortium-agreed biochemical description provided in a rule-based formalism. The general aim is to stimulate collaboration between experimental and computational systems biologists to achieve better understanding of cyanobacteria.


Biological Knowledge Online Platform Graphical Scheme Elementary Flux Mode Model Repository 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Gene Ontology Consortium, Nat. Genet. 25(1), 25–29 (2000)Google Scholar
  2. 2.
    Bateman, A., et al.: Uniprot: a hub for protein information. Nucleic Acids Res. 43(D1), D204–D212 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beard, D.A., et al.: CellML metadata standards, associated tools and repositories. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 367(1895), 1845–1867 (2009)CrossRefGoogle Scholar
  4. 4.
    Croft, D., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 42(D1), D472–D477 (2014)CrossRefGoogle Scholar
  5. 5.
    Dada, J.O., et al.: SBRML: a markup language for associating systems biology data with models. Bioinformatics 26(7), 932–938 (2010)CrossRefGoogle Scholar
  6. 6.
    Eaton, J.W., et al.: GNU Octave version 3.0.1 manual: a high-level interactive language for numerical computations. CreateSpace Independent Publishing Platform, Seattle (2009)Google Scholar
  7. 7.
    Harris, T.W., et al.: Wormbase: a comprehensive resource for nematode research. Nucleic Acids Res. 38(suppl 1), D463–D467 (2010)CrossRefGoogle Scholar
  8. 8.
    Hertel, S., et al.: Revealing a two-loop transcriptional feedback mechanism in the cyanobacterial circadian clock. PLoS Comput. Biol. 9(3), 1–16 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hoops, S., et al.: COPASI - a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)CrossRefGoogle Scholar
  10. 10.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  11. 11.
    Jablonsky, J., et al.: Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes. PLoS ONE 9(8), 1–8 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kanehisa, M., et al.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1), D457–D462 (2016)CrossRefGoogle Scholar
  13. 13.
    Kent, E., et al.: Condor-COPASI: high-throughput computing for biochemical networks. BMC Syst. Biol. 6(1), 1–13 (2012)CrossRefGoogle Scholar
  14. 14.
    Keseler, I.M., et al.: EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 41(D1), D605–D612 (2013)CrossRefGoogle Scholar
  15. 15.
    Klement, M., et al.: A comprehensive web-based platform for domain-specific biological models. Electron. Notes Theoret. Comput. Sci. 299, 61–67 (2013)CrossRefGoogle Scholar
  16. 16.
    Klement, M., et al.: Biochemical space: a framework for systemic annotation of biological models. In: Proceedings of the 5th International Workshop on Interactions Between Computer Science and Biology (CS2Bio-14). Electronic Notes in Theoretical Computer Science, vol. 306, pp. 31–44 (2014)Google Scholar
  17. 17.
    Le Novère, N., et al.: Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, D689–D691 (2006)CrossRefGoogle Scholar
  18. 18.
    Miyoshi, F., et al.: A mathematical model for the kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria. J. Biol. Rhythms 22(1), 69–80 (2007)CrossRefGoogle Scholar
  19. 19.
    Olivier, B.G., et al.: Web-based kinetic modelling using jws online. Bioinformatics 20(13), 2143–2144 (2004)CrossRefGoogle Scholar
  20. 20.
    Rizk, A., et al.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12), i169–i178 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matej Troják
    • 1
  • David Šafránek
    • 1
  • Jakub Hrabec
    • 1
  • Jakub Šalagovič
    • 1
  • Františka Romanovská
    • 1
  • Jan Červený
    • 2
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Global Change Research Centre AS CR, v. v. i.BrnoCzech Republic

Personalised recommendations