Advertisement

Goal-Oriented Reduction of Automata Networks

  • Loïc Paulevé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)

Abstract

We consider networks of finite-state machines having local transitions conditioned by the current state of other automata. In this paper, we introduce a reduction procedure tailored for reachability properties of the form “from global state \({s}\), there exists a sequence of transitions leading to a state where an automaton g is in a local state \(\top \)”. By analysing the causality of transitions within the individual automata, the reduction identifies local transitions which can be removed while preserving all the minimal traces satisfying the reachability property. The complexity of the procedure is polynomial with the total number of local transitions, and exponential with the maximal number of local states within an automaton. Applied to Boolean and multi-valued networks modelling dynamics of biological systems, the reduction can shrink down significantly the reachable state space, enhancing the tractability of the model-checking of large networks.

Keywords

Local State Local Transition Biological Network Boolean Network Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess T-helper cell plasticity. Front. Bioeng. Biotechnol. 2, 86 (2015)Google Scholar
  2. 2.
    Aracena, J., Goles, E., Moreira, A., Salinas, L.: On the robustness of update schedules in Boolean networks. Biosystems 97(1), 1–8 (2009)CrossRefGoogle Scholar
  3. 3.
    Bernardinello, L., De Cindio, F.: A survey of basic net models and modular net classes. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992. LNCS, vol. 609, pp. 304–351. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G. (ed.) Advances in Petri Nets 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  5. 5.
    Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying safety properties of a PowerPC\(^{\rm TM}\) microprocessor using symbolic model checking without BDDs. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 60–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Heidelberg (2014)Google Scholar
  7. 7.
    Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret. Comput. Sci. 147(1&2), 117–136 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS Comput. Biol. 11(11), e1004571 (2015)CrossRefGoogle Scholar
  11. 11.
    I. Curie/Sysbio. RB/E2F pathway. http://bioinfo-out.curie.fr/projects/rbpathway/
  12. 12.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C.D., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012. LIPIcs, vol. 18, pp. 276–288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  13. 13.
    Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Checking. Monographs in Theoretical Computer Science. An EATCS Series, 1st edn. Springer Publishing Company, Incorporated, New York (2008)zbMATHGoogle Scholar
  14. 14.
    Feret, J., Koeppl, H., Petrov, T.: Stochastic fragments: a framework for the exact reduction of the stochastic semantics of rule-based models. Int. J. Softw. Inf. 7(4), 527–604 (2013)Google Scholar
  15. 15.
    Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Haddad, S., Pradat-Peyre, J.-F.: New efficient Petri nets reductions for parallel programs verification. Parallel Process. Lett. 16(1), 101–116 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hamez, A., Thierry-Mieg, Y., Kordon, F.: Building efficient model checkers using hierarchical set decision diagrams and automatic saturation. Fundam. Inf. 94(3–4), 413–437 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł.: Step traces. Acta Informatica 53, 35–65 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.: Concurrent and maximally concurrent evolution of nonsequential systems. Theoret. Comput. Sci. 43, 213–238 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform. 7(1), 56 (2006)CrossRefGoogle Scholar
  22. 22.
    Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  23. 23.
    LIP6/Move: Its tools. http://ddd.lip.6.fr/itstools.php
  24. 24.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S., Probst, D.: Property preserving abstractions for the verification of concurrent systems. Formal Methods Syst. Des. 6(1), 11–44 (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Madelaine, G., Lhoussaine, C., Niehren, J.: Attractor equivalence: an observational semantics for reaction networks. In: Fages, F., Piazza, C. (eds.) FMMB 2014. LNCS, vol. 8738, pp. 82–101. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs. Theoret. Comput. Sci. 412(21), 2207–2218 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Paulevé, L.: PINT - Static analyzer for dynamics of automata networks. http://loicpauleve.name/pint
  28. 28.
    Paulevé, L., Andrieux, G., Koeppl, H.: Under-approximating cut sets for reachability in large scale automata networks. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 69–84. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Math. Struct. Comput. Sci. 22(04), 651–685 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Priese, L., Wimmel, H.: A uniform approach to true-concurrency and interleaving semantics for Petri nets. Theoret. Comput. Sci. 206(1–2), 219–256 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Saez-Rodriguez, J., Simeoni, L., Lindquist, J.A., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.-U., Weismantel, R., Gilles, E.D., Klamt, S., Schraven, B.: A logical model provides insights into T cell receptor signaling. PLoS Comput. Biol. 3(8), e163 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1–20 (2009)CrossRefGoogle Scholar
  33. 33.
    Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of EGFR/ERBB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)CrossRefGoogle Scholar
  34. 34.
    Schnoebelen, P., Sidorova, N.: Bisimulation and the reduction of Petri nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 409–423. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Sifakis, J.: Property preserving homomorphisms of transition systems. In: Clarke, E., Kozen, D. (eds.) Logics of Programs. LNCS, vol. 164, pp. 458–473. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  37. 37.
    Talcott, C., Dill, D.L.: Multiple representations of biological processes. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 221–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  38. 38.
    Weinstein, N., Mendoza, L.: A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front. Genet. 4(112) (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.LRI UMR 8623, Univ. Paris-Sud – CNRS, Université Paris-SaclayOrsayFrance

Personalised recommendations