Advertisement

A Stochastic Hybrid Approximation for Chemical Kinetics Based on the Linear Noise Approximation

  • Luca Cardelli
  • Marta Kwiatkowska
  • Luca LaurentiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9859)

Abstract

The Linear Noise Approximation (LNA) is a continuous approximation of the CME, which improves scalability and is accurate for those reactions satisfying the leap conditions. We formulate a novel stochastic hybrid approximation method for chemical reaction networks based on adaptive partitioning of the species and reactions according to leap conditions into two classes, one solved numerically via the CME and the other using the LNA. The leap criteria are more general than partitioning based on population thresholds, and the method can be combined with any numerical solution of the CME. We then use the hybrid model to derive a fast approximate model checking algorithm for Stochastic Evolution Logic (SEL). Experimental evaluation on several case studies demonstrates that the techniques are able to provide an accurate stochastic characterisation for a large class of systems, especially those presenting dynamical stiffness, resulting in significant improvement of computation time while still maintaining scalability.

Keywords

Covariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. 1.
    Abate, A., Brim, L., Češka, M., Kwiatkowska, M.: Adaptive aggregation of markov chains: quantitative analysis of chemical reaction networks. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195–213. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Adler, R.J.: An introduction to continuity, extrema, related topics for general Gaussian processes. Lect. Notes-Monogr. Ser. 12, i-155 (1990)MathSciNetGoogle Scholar
  3. 3.
    Anderson, D.F., Kurtz, T.G.: Stochastic Analysis of Biochemical Systems. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage \(\lambda \)-infected escherichia coli cells. Genetics 149(4), 1633–1648 (1998)Google Scholar
  5. 5.
    Bortolussi, L., Lanciani, R.: Model checking Markov population models by central limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 123–138. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122(1), 014116 (2005)CrossRefGoogle Scholar
  7. 7.
    Cardelli, L.: On process rate semantics. Theoret. Comput. Sci. 391(3), 190–215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.) CMSB 2015. LNCS, vol. 9308, pp. 64–76. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Kwiatkowska, M., Laurenti, L.: Programming discrete distributions with chemical reaction networks. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 35–51. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-43994-5_3 CrossRefGoogle Scholar
  10. 10.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence, vol. 282. Wiley, Hoboken (2009)zbMATHGoogle Scholar
  11. 11.
    Ganguly, A., Altintan, D., Koeppl, H.: Jump-diffusion approximation of stochastic reaction dynamics: error bounds and algorithms. Multiscale Model. Simul. 13(4), 1390–1419 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  13. 13.
    Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297–306 (2000)CrossRefGoogle Scholar
  14. 14.
    Gillespie, D.T.: Simulation methods in systems biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 125–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Goutsias, J.: Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122(18), 184102 (2005)CrossRefGoogle Scholar
  16. 16.
    Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529(2), 199–264 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hasenauer, J., Wolf, V., Kazeroonian, A., Theis, F.: Method of conditional moments (mcm) for the chemical master equation. J. Math. Biol. 69(3), 687–735 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Henzinger, T.A., Mikeev, L., Mateescu, M., Wolf, V.: Hybrid numerical solution of the chemical master equation. In: Proceedings of the 8th International Conference on Computational Methods in Systems Biology, pp. 55–65. ACM (2010)Google Scholar
  19. 19.
    Hepp, B., Gupta, A., Khammash, M.: Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)CrossRefGoogle Scholar
  20. 20.
    Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking, pp. 220–270 (2007)Google Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Qadeer, S., Gopalakrishnan, G. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Mateescu, M., Wolf, V., Didier, F., Henzinger, T., et al.: Fast adaptive uniformisation of the chemical master equation. IET 4, 441–452 (2010)Google Scholar
  23. 23.
    McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. 94(3), 814–819 (1997)CrossRefGoogle Scholar
  24. 24.
    Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)CrossRefzbMATHGoogle Scholar
  25. 25.
    Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)CrossRefGoogle Scholar
  26. 26.
    Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122(5), 054103 (2005)CrossRefGoogle Scholar
  27. 27.
    Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theoret. Biol. 218(3), 309–321 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Thattai, M., Van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. 98(15), 8614–8619 (2001)CrossRefGoogle Scholar
  29. 29.
    Thomas, P., Popović, N., Grima, R.: Phenotypic switching in gene regulatory networks. Proc. Nat. Acad. Sci. 111(19), 6994–6999 (2014)CrossRefGoogle Scholar
  30. 30.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)zbMATHGoogle Scholar
  31. 31.
    Wallace, E., Gillespie, D., Sanft, K., Petzold, L.: Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Syst. Biol. 6(4), 102–115 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Luca Cardelli
    • 1
    • 2
  • Marta Kwiatkowska
    • 2
  • Luca Laurenti
    • 2
    Email author
  1. 1.Microsoft ResearchCambridgeUK
  2. 2.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations