Classification-Based Causality Detection in Time Series

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9444)

Abstract

Brain effective connectivity aims to detect causal interactions between distinct brain units and it can be studied through the analysis of magneto/electroencephalography (M/EEG) signals. Methods to evaluate effective connectivity belong to the large body of literature related to detecting causal interactions between multivariate autoregressive (MAR) data, a field of signal processing. Here, we reformulate the problem of causality detection as a supervised learning task and we propose a classification-based approach for it. Our solution takes advantage of the MAR model by generating a labeled data set that contains trials of multivariate signals for each possible configuration of causal interactions. Through the definition of a proper feature space, a classifier is trained to identify the causality structure within each trial. As evidence of the efficacy of the proposed method, we report both the cross-validated results and the details of our submission to the causality detection competition of Biomag2014, where the method reached the 2nd place.

References

  1. 1.
    Baccalà, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84(6), 463–474 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11417058 CrossRefMATHGoogle Scholar
  2. 2.
    Baccalà, L.A., Sameshima, K., Ballester, G., Do Valle, A.C., Timo-Iaria, C.: Studying the interaction between brain structures via directed coherence and granger causality. Appl. Signal Process. 5, 40–48 (1998). http://www.lcs.poli.usp.br/~baccala/pdc/papers/asp.pdf
  3. 3.
    Brookes, M.J., Woolrich, M.W., Barnes, G.R.: Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage 63(2), 910–920 (2012). http://view.ncbi.nlm.nih.gov/pubmed/22484306 CrossRefGoogle Scholar
  4. 4.
    Butler, S.R., Glass, A.: Asymmetries in the electroencephalogram associated with cerebral dominance. Electroencephalogr. Clin. Neurophysiol. 36(5), 481–491 (1974). http://view.ncbi.nlm.nih.gov/pubmed/4135345 CrossRefGoogle Scholar
  5. 5.
    Faes, L., Erla, S., Nollo, G.: Measuring connectivity in linear multivariate processes: definitions, interpretation, and practical analysis. Comput. Math. Methods Med. 2012, 1–18 (2012). doi:10.1155/2012/140513 MathSciNetMATHGoogle Scholar
  6. 6.
    Freiwald, W.A., Valdes, P., Bosch, J., Biscay, R., Jimenez, J.C., Rodriguez, L.M., Rodriguez, V., Kreiter, A.K., Singer, W.: Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex. J. Neurosci. Methods 94(1), 105–119 (1999). http://view.ncbi.nlm.nih.gov/pubmed/10638819 CrossRefGoogle Scholar
  7. 7.
    Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1(1), 13–36 (2011). doi:10.1089/brain.2011.0008 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969). doi:10.2307/1912791 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hlavackovaschindler, K., Palus, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007). doi:10.1016/j.physrep.2006.12.004 CrossRefGoogle Scholar
  10. 10.
    Horwitz, B.: The elusive concept of brain connectivity. NeuroImage 19(2 Pt 1), 466–470 (2003). http://view.ncbi.nlm.nih.gov/pubmed/12814595 CrossRefGoogle Scholar
  11. 11.
    Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85(2), 145–157 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11508777 CrossRefMATHGoogle Scholar
  12. 12.
    Kaminski, M.J., Blinowska, K.J.: A new method of the description of the information flow in the brain structures. Biol. Cybern. 65(3), 203–210 (1991). doi:10.1007/bf00198091 CrossRefMATHGoogle Scholar
  13. 13.
    Papana, A., Kugiumtzis, D., Larsson, P.G.: Reducing the bias of causality measures. Phys. Rev. E 83(3) (2011). http://dx.doi.org/10.1103/physreve.83.036207
  14. 14.
    Pereda, E., Quiroga, R.Q.Q., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77(1–2), 1–37 (2005). doi:10.1016/j.pneurobio.2005.10.003 CrossRefGoogle Scholar
  15. 15.
    Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011). doi:10.1016/j.compbiomed.2011.06.020 CrossRefGoogle Scholar
  16. 16.
    Winterhalder, M., Schelter, B., Hesse, W., Schwab, K., Leistritz, L., Klan, D., Bauer, R., Timmer, J., Witte, H.: Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Sig. Process. 85(11), 2137–2160 (2005). doi:10.1016/j.sigpro.2005.07.011 CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Danilo Benozzo
    • 1
    • 2
  • Emanuele Olivetti
    • 1
    • 2
  • Paolo Avesani
    • 1
    • 2
  1. 1.NeuroInformatics Laboratory (NILab)Bruno Kessler FoundationTrentoItaly
  2. 2.Center for Mind and Brain Sciences (CIMeC)University of TrentoTrentoItaly

Personalised recommendations