Mapping Tractography Across Subjects

  • Thien Bao Nguyen
  • Emanuele Olivetti
  • Paolo Avesani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9444)

Abstract

Diffusion magnetic resonance imaging (dMRI) and tractography provide means to study the anatomical structures within the white matter of the brain. When studying tractography data across subjects, it is usually necessary to align, i.e. to register, tractographies together. This registration step is most often performed by applying the transformation resulting from the registration of other volumetric images (T1, FA). In contrast with registration methods that transform tractographies, in this work, we try to find which streamline in one tractography correspond to which streamline in the other tractography, without any transformation. In other words, we try to find a mapping between the tractographies. We propose a graph-based solution for the tractography mapping problem and we explain similarities and differences with the related well-known graph matching problem. Specifically, we define a loss function based on the pairwise streamline distance and reformulate the mapping problem as combinatorial optimization of that loss function. We show preliminary promising results where we compare the proposed method, implemented with simulated annealing, against a standard registration techniques in a task of segmentation of the corticospinal tract.

References

  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). http://dx.doi.org/10.1016/s0006-3495(94)80775–1 CrossRefGoogle Scholar
  2. 2.
    Bazin, P.L.L., Ye, C., Bogovic, J.A., Shiee, N., Reich, D.S., Prince, J.L., Pham, D.L.: Direct segmentation of the major white matter tracts in diffusion tensor images. NeuroImage 58(2), 458–468 (2011). http://dx.doi.org/10.1016/j.neuroimage.2011.06.020 CrossRefGoogle Scholar
  3. 3.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Patt. Recogn. Artif. Intell. 18(03), 265–298 (2004). http://dx.doi.org/10.1142/s0218001404003228 CrossRefGoogle Scholar
  4. 4.
    Garyfallidis, E.: Towards an accurate brain tractography. Ph.D. thesis, University of Cambridge (2012)Google Scholar
  5. 5.
    Golding, D., Tittgemeyer, M., Anwander, A., Douglas, T.: A comparison of methods for the registration of tractographic fibre images. In: Robinson, P., Nel, A. (eds.) Proceedings of the Twenty-Second Annual Symposium of the Pattern Recognition Association of South Africa. pp. 55–59 (2011)Google Scholar
  6. 6.
    Goodlett, C.B., Fletcher, P.T., Gilmore, J.H., Gerig, G.: Group analysis of DTI fiber tract statistics with application to neurodevelopment. NeuroImage 45(1 Suppl), S133–S142 (2009). http://dx.doi.org/10.1016/j.neuroimage.2008.10.060 CrossRefGoogle Scholar
  7. 7.
    Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001). http://view.ncbi.nlm.nih.gov/pubmed/11516708 CrossRefGoogle Scholar
  8. 8.
    Laarhoven, P.J.M., Aarts, E.H.L. (eds.): Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, Norwell (1987). http://portal.acm.org/citation.cfm?id=59580 MATHGoogle Scholar
  9. 9.
    Mori, S., van Zijl, P.C.M.: Fiber tracking: principles and strategies, a technical review. NMR Biomed. 15(7–8), 468–480 (2002). http://dx.doi.org/10.1002/nbm.781 CrossRefGoogle Scholar
  10. 10.
    O’Donnell, L.J., Wells III, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012)Google Scholar
  11. 11.
    Olivetti, E., Nguyen, T.B., Avesani, P.: Fast Clustering for interactive tractography segmentation. In: The 3rd IEEE Intl Workshop on Pattern Recognition in NeuroImaging (2013). http://dx.doi.org/10.1109/PRNI.2013.20
  12. 12.
    Wang, Y., Gupta, A., Liu, Z., Zhang, H., Escolar, M.L., Gilmore, J.H., Gouttard, S., Fillard, P., Maltbie, E., Gerig, G., Styner, M.: DTI registration in atlas based fiber analysis of infantile Krabbe disease. NeuroImage 55(4), 1577–1586 (2011)CrossRefGoogle Scholar
  13. 13.
    Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2227–2242 (2008). http://dx.doi.org/10.1109/tpami.2008.245 CrossRefGoogle Scholar
  14. 14.
    Zhang, S., Correia, S., Laidlaw, D.H.: Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Trans. Visual. Comput. Graph. 14(5), 1044–1053 (2008). http://dx.doi.org/10.1109/tvcg.2008.52 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Thien Bao Nguyen
    • 1
    • 2
  • Emanuele Olivetti
    • 2
    • 3
  • Paolo Avesani
    • 2
    • 3
  1. 1.Faculty of Information TechnologyUniversity of Technology and Education, HoChiMinh CityHoChiMinhVietnam
  2. 2.NeuroInformatics Laboratory (NILab)Bruno Kessler FoundationTrentoItaly
  3. 3.Center for Mind and Brain Sciences (CIMeC)University of TrentoTrentoItaly

Personalised recommendations