Multi-Task Learning for Interpretation of Brain Decoding Models

  • Seyed Mostafa KiaEmail author
  • Sandro Vega-Pons
  • Emanuele Olivetti
  • Paolo Avesani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9444)


Improving the interpretability of multivariate models is of primary interest for many neuroimaging studies. In this study, we present an application of multi-task learning (MTL) to enhance the interpretability of linear classifiers once applied to neuroimaging data. To attain our goal, we propose to divide the data into spatial fractions and define the temporal data of each spatial unit as a task in MTL paradigm. Our result on magnetoencephalography (MEG) data reveals preliminary evidence that, (1) dividing the brain recordings into spatial fractions based on spatial units of data and (2) considering each spatial fraction as a task, are two factors that provide more stability and consequently more interpretability for brain decoding models.


Spatial Unit Linear Classifier Spatial Fraction Brain Decode Brain Imaging Literature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Afshin-Pour, B., Soltanian-Zadeh, H., Hossein-Zadeh, G.A., Grady, C.L., Strother, S.C.: A mutual information-based metric for evaluation of fMRI data-processing approaches. Hum. Brain Mapp. 32(5), 699–715 (2011)CrossRefGoogle Scholar
  2. 2.
    Ben-David, S., Gehrke, J., Schuller, R.: A theoretical framework for learning from a pool of disparate data sources. In: International Conference on Knowledge Discovery and Data Mining, pp. 443–449. ACM (2002)Google Scholar
  3. 3.
    de Brecht, M., Yamagishi, N.: Combining sparseness and smoothness improves classification accuracy and interpretability. NeuroImage 60(2), 1550–1561 (2012)CrossRefGoogle Scholar
  4. 4.
    Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R.: Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44(1), 112–122 (2009)CrossRefGoogle Scholar
  5. 5.
    Chen, X., Kim, S., Lin, Q., Carbonell, J.G., Xing, E.P.: Graph-structured multi-task regression and an efficient optimization method for general fused lasso. arXiv preprint arXiv:1005.3579 (2010)
  6. 6.
    Conroy, B.R., Walz, J.M., Sajda, P.: Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fMRI decoding models. PLoS ONE 8(11), e79271 (2013)CrossRefGoogle Scholar
  7. 7.
    Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI) brain reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19(2), 261–270 (2003)CrossRefGoogle Scholar
  8. 8.
    Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)Google Scholar
  9. 9.
    van Gerven, M., Hesse, C., Jensen, O., Heskes, T.: Interpreting single trial data using groupwise regularisation. NeuroImage 46(3), 665–676 (2009)CrossRefGoogle Scholar
  10. 10.
    Gramfort, A., Thirion, B., Varoquaux, G.: Identifying predictive regions from fMRI with TV-L1 prior. In: 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 17–20. IEEE (2013)Google Scholar
  11. 11.
    Groppe, D.M., Urbach, T.P., Kutas, M.: Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology 48(12), 1711–1725 (2011)CrossRefGoogle Scholar
  12. 12.
    Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E.: Interpretable whole-brain prediction analysis with graphnet. NeuroImage 72, 304–321 (2013)CrossRefGoogle Scholar
  13. 13.
    Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., Bießmann, F.: On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110 (2013)Google Scholar
  14. 14.
    Haufe, S., Meinecke, F., Gorgen, K., Dahne, S., Haynes, J.D., Blankertz, B., Biessmann, F.: Parameter interpretation, regularization and source localization in multivariate linear models. In: 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4. IEEE (2014)Google Scholar
  15. 15.
    Henson, R.N., Wakeman, D.G., Litvak, V., Friston, K.J.: A parametric empirical Bayesian framework for the EEG/MEG inverse problem: generative models for multi-subject and multi-modal integration. Front. Hum. Neurosci. 5, 76 (2011)CrossRefGoogle Scholar
  16. 16.
    Kia, S.M.: Mass-univariate hypothesis testing on MEEG data using cross-validation. Master’s thesis, University of Trento (2013)Google Scholar
  17. 17.
    Maris, E.: Statistical testing in electrophysiological studies. Psychophysiology 49(4), 549–565 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maris, E., Oostenveld, R.: Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164(1), 177–190 (2007)CrossRefGoogle Scholar
  19. 19.
    Olivetti, E., Kia, S.M., Avesani, P.: MEG decoding across subjects. In: 2014 International Workshop on Pattern Recognition in Neuroimaging (2014)Google Scholar
  20. 20.
    Olivetti, E., Kia, S.M., Avesani, P.: Sensor-level maps with the kernel two-sample test. In: 2014 International Workshop on Pattern Recognition in Neuroimaging, pp. 1–4. IEEE (2014)Google Scholar
  21. 21.
    Olivetti, E., Mognon, A., Greiner, S., Avesani, P.: Brain decoding: biases in error estimation. In: 2010 First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (WBD), pp. 40–43. IEEE (2010)Google Scholar
  22. 22.
    Rasmussen, P.M., Hansen, L.K., Madsen, K.H., Churchill, N.W., Strother, S.C.: Model sparsity and brain pattern interpretation of classification models in neuroimaging. Pattern Recogn. 45(6), 2085–2100 (2012)CrossRefGoogle Scholar
  23. 23.
    Rish, I., Cecchi, G.A., Lozano, A., Niculescu-Mizil, A.: Practical Applications of Sparse Modeling. MIT Press, Cambridge (2014)Google Scholar
  24. 24.
    Strother, S.C., Rasmussen, P.M., Churchill, N.W., Hansen, K.: Stability and Reproducibility in fMRI Analysis. Springer, New York (2014)Google Scholar
  25. 25.
    Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Valverde-Albacete, F.J., Peláez-Moreno, C.: 100% classification accuracy considered harmful: the normalized information transfer factor explains the accuracy paradox. PLoS ONE 9(1), e84217 (2014)CrossRefGoogle Scholar
  27. 27.
    Varoquaux, G., Gramfort, A., Thirion, B.: Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. arXiv preprint arXiv:1206.6447 (2012)
  28. 28.
    Xing, E.P., Kolar, M., Kim, S., Chen, X.: High-dimensional sparse structured input-output models, with applications to GWAS. In: Practical Applications of Sparse Modeling, p. 37 (2014)Google Scholar
  29. 29.
    Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis. 101(2), 367–383 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zhou, J., Chen, J., Ye, J.: MALSAR: Multi-task Learning via Structural Regularization. Arizona State University (2011).
  32. 32.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc.: Ser. B 67(2), 301–320 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Seyed Mostafa Kia
    • 1
    • 2
    • 3
    Email author
  • Sandro Vega-Pons
    • 2
    • 3
  • Emanuele Olivetti
    • 2
    • 3
  • Paolo Avesani
    • 2
    • 3
  1. 1.University of TrentoTrentoItaly
  2. 2.NeuroInformatics Laboratory (NILab)Bruno Kessler FoundationTrentoItaly
  3. 3.Centro Interdipartimentale Mente e Cervello (CIMeC)University of TrentoTrentoItaly

Personalised recommendations