Microbe Induced Degradation of Pesticides in Agricultural Soils

  • Durgesh Kumar Jaiswal
  • Jay Prakash Verma
  • Janardan Yadav
Part of the Environmental Science and Engineering book series (ESE)


The extensive use of pesticides has played hazard with living beings and the environment and also these chemicals persist and leach in environment for a long time because of more water solubility, tendency to adsorb to the soil (soil adsorption) and more half-life that is tendency to persistence in the environment. The indigenous microbial strains are more effective pesticide degrading microbes because they are survived and grow very well in particular soil environment than exo-genic microbes which brought from other agro-climatic region. In this chapter, we have attempted to discuss the recent challenge of pesticide problem in soil environment and their degradation by the use of effective indigenous pesticides degrading microorganism. Therefore, the use of pesticide degrading microbial consortia is an eco-friendly technology for sustainable agriculture production.


Pseudomonas Putida Effective Microorganism Ferulic Acid Esterase Organochlorine Insecticide Pesticide Pollutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors thankful to SERB (Science and Engineering Research Board), New Delhi, India for providing fund for project entitled “Studies of agriculturally important microorganism to develop effective microbial consortium for degradation of pesticide and insecticide in soil to enhance sustainable agriculture” to carry out research on pesticide degradation .


  1. Abraham, W. R., Nogales, B., Golyshin, P. N., Pieper, D. H., & Timmis, K. N. (2002). Polychlorinated biphenyl-degrading microbial communities and sediments. Current Opinion in Microbiology, 5, 246–253.CrossRefGoogle Scholar
  2. Agnihotri, N. P. (1999). Pesticide safety and monitoring. New Delhi: All India Coordinated Research Project on Pesticides Residues, Indian Council of Agricultural Research.Google Scholar
  3. Alexander, M. (1981). Biodegradation of chemicals of environmental concern. Science, 211, 132–138.CrossRefGoogle Scholar
  4. Anonymous. (1991). Survey of the Environment, The Hindu, Government of India, Eleventh Five-Year Plan (2008–2012) Planning Commission of India, New Delhi,
  5. Bhatnagar, V. K. (2001). Pesticides pollution: trends and perspectives. ICMR Bulletin, 31, 87–88.Google Scholar
  6. Bollag, J. M. (1974). Microbial transformation of pesticides. Advances in Applied Microbiology, 18, 75–130.CrossRefGoogle Scholar
  7. Bouseba, B., Zertal, A., Beguet, J., Rouard, N., Devers, M., Martin, C., et al. (2009). Evidence for 2, 4-D mineralisation in mediterranean soils: Impact of moisture content and temperature. Pest Management Science, 65, 1021–1029.CrossRefGoogle Scholar
  8. Burchfield, H. P., & Storrs, E. E. (1957). Effect of chlorine substitution and isomerism on intractions of S-triazine derivatives with conidia of Neurospora sitophilia. Boyce Thompson Institute for Plant Research, 18, 429–452.Google Scholar
  9. Burns, R. G. (1975). Factors affecting pesticide loss from soil. In E. A. Paul & A. D. McLaren (Eds.), Soil biochemistry (pp. 103–141). New York: Marcel Dekker Inc.Google Scholar
  10. Calvet, R., Barriuso, E., Bedos, C., Benoit, P., Charnay, M. P., & Coquet, Y. (2005). Les pesticides dans les sols. Conséquences agronomiqueset environnementales (Editions France Agricole), Dunod, ISBN 2-85557-119-7, Paris.Google Scholar
  11. Chacko, C. I., Lockwood, J. L., & Zabik, M. (1966). Chlorinated hydrocarbon pesticides: Degradation by microbes. Science, 154, 893–895.CrossRefGoogle Scholar
  12. Chaplain, V., Mougin, C., Barriuso, E., Mamy, L., Vieublé-Gonod, L., & Benoit, P., et al. (2011). Fate of pesticides in soils: Toward an integrated approach of influential factors. INTECH Open Access Publisher.Google Scholar
  13. Chen, X., Christopher, A., Jones, J. P., Bell, S. G., Guo, Q., Xu, F., et al. (2002). Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450 cam with 1, 3,5 trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenezene. Journal of Biological Chemistry, 277, 37519–37526.CrossRefGoogle Scholar
  14. Coats, J. R. (1991). Pesticide degradation mechanisms and environmental activation. In ACS Symposium Series-American Chemical Society (USA).Google Scholar
  15. Cork, D. J., & Krueger, J. P. (1991). Microbial transformation of herbicide and pesticides. Advances in Applied Microbiology, 36, 1–66.CrossRefGoogle Scholar
  16. Cox, L., & Walker, A. (1999). Studies of time-dependent sorption of linuron and isoproturon in soils. Chemosphere, 38(12), 2707–2718.CrossRefGoogle Scholar
  17. Cui, Z., Li, S., & Fu, G. (2001). Isolation of methyl-parathion-degrading strain M6 and cloning of the methyl-parathion hydrolase gene. Applied and Environmental Microbiology, 67, 4922–4925.CrossRefGoogle Scholar
  18. Cycon, M., Markowicz, A., Borymski, S., Wojcik, M., & Piotrowska-Seget, Z. (2013). Imidacloprid induces changes in the structure, genetic diversity and catabolic activity of soil microbial communities. Journal of Environmental Management, 131, 55–65.CrossRefGoogle Scholar
  19. Deer, H. M., & Beard, R. (2001). Effect of water pH on the chemical stability of pesticides. AG/Pesticides, 14, 1.Google Scholar
  20. Desaint, S., Hartmann, A., Parekh, N. R., & Fournier, J. C. (2000). Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiology Ecology, 34, 173–180.CrossRefGoogle Scholar
  21. Didierjean, L., Gondet, L., Perkins, R., Lau, S. M. C., Schaller, H., O’Keefe, D. P., et al. (2002). Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology, 130(1), 179–189.CrossRefGoogle Scholar
  22. El-Ghamry, A. M., Huang, C. Y., & Xu, J. M. (2001). Combined effects of two sulfonylurea herbicides on soil microbial biomass and N-mineralization. Journal of Environmental Sciences, 13, 311–317.Google Scholar
  23. EPA. (2002). EPA’s National Service Center for Environmental Publications. Cincinnati: Endosulfan RED Facts.
  24. FAO. (2005). Proceedings of the Asia Regional Workshop. Bangkok: Regional Office for Asia and the Pacific.Google Scholar
  25. Fetzner, S. R., & Lingens, F. (1994). Bacterial dehalogenases. Microbiological Reviews, 58(4), 641–685.Google Scholar
  26. Finley, S. D., Broadbelt, L. J., & Hatzimanikatis, V. (2010). Insilico feasibility of novel biodegradation pathways for 1, 2, 4-trichlorobenzene. BMC Systems Biology, 4, 4–14.CrossRefGoogle Scholar
  27. Fragoeiro, S., & Magan, N. (2005). Impact of hydrolytic enzyme activity of two white rot fungi on degradation of a mixture of three pesticides under osmotic stress. Environmental Microbiology, 7, 348–355.CrossRefGoogle Scholar
  28. Gold, R. E., Howell, H. N., Pawson, B. M., Wright, M. S., & Lutz, J. L. (1996). Persistance and bioavailability of termicides to subterranean termite from five soil types and location in Texas. Sociobiology, 28, 337–363.Google Scholar
  29. Gupta, P. K. (2004). Pesticide exposure—Indian scene. Toxicology, 198(1), 83–90.CrossRefGoogle Scholar
  30. Hammouda, O. (1999). Response of the paddy field cyanobacterium Anabaena doliolum to carbofuran. Ecotoxicology and Environmental Safety, 44(2), 215–219.CrossRefGoogle Scholar
  31. Horne, I., Sutherland, T. D., Oakeshott, J. G., & Russell, R. J. (2002). Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiology, 148, 2687–2695.CrossRefGoogle Scholar
  32. ICAR. (1967). Report of the special committee on harmful effects of pesticides (p. 78). ICAR: New Delhi.Google Scholar
  33. Ingram, C. W., Coyne, M. S., & Williams, D. W. (2005). Effects of commercial diazinon and imidacloprid on microbial urease activity in soil and sod. Journal of Environmental Quality, 34(5), 1573–1580.CrossRefGoogle Scholar
  34. Ismail, B. S., Mazlinda, M., & Zuriati, Z. (2012). Effects of temperature, soil moisture content and soil type on the degradation of cypermethrin in two types of Malaysian agricultural soils. World Applied Sciences Journal, 17, 428–432.Google Scholar
  35. Jain, R. K., Kapur, M., Labana, S., Lal, B., Sarma, P. M., Bhattacharya, D., et al. (2005). Microbial diversity: Application of microorganisms for the biodegradation of xenobiotics. Current Science, 89, 101–112.Google Scholar
  36. Kalam, A., & Mukherjee, A. K. (2001). Influence of hexaconazole, carbofuran and ethion on soil microflora and dehydrogenase activities in soil and intact cell. Indian Journal of Experimental Biology, 39(1), 90–94.Google Scholar
  37. Kannan, K., Tanabe, S., Ramesh, A., Subramanian, A., & Tatsukawa, R. (1992). Persistent orgnochlorine residues in food stuffs from India and their implications on human dietary exposure. Journal of Agricultural and Food Chemistry, 40, 518–524.CrossRefGoogle Scholar
  38. Khan, M. S., Chaudhry, P., Wani, P. A., & Zaidi, A. (2006). Biotoxic effects of the herbicides on growth, seed yield, and grain protein of green gram. Journal of Applied Sciences and Environmental Management, 10(3), 141–146.Google Scholar
  39. Khare, E., & Arora, N. K. (2015). Effects of soil environment on field efficacy of microbial inoculants. In Plant Microbes Symbiosis: Appl. Facet. (pp. 353–381). India: Springer.Google Scholar
  40. Kumar, K., Devi, S. S., Krishnamurthi, K., Kanade, G. S., & Chakrabarti, T. (2007). Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere, 68(2), 317–322.CrossRefGoogle Scholar
  41. Kyei-Boahen, S., Slinkard, A. E., & Walley, F. L. (2001). Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Canadian Journal of Microbiology, 47, 585–589.CrossRefGoogle Scholar
  42. Laemmli, C. M., Leveau, J. H. J., Zehnder, A. J. B., & Van der Meer, J. R. (2000). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). Journal of Bacteriology, 182, 4165–4172.CrossRefGoogle Scholar
  43. Lakshmi, A. (1993). Pesticides in India: Risk assessment to aquatic ecosystems. Science of the Total Environment, 134, 243–253.CrossRefGoogle Scholar
  44. Lallas, P. L. (2001). The Stockholm Convention on persistent organic pollutants. American Journal of International Law, 692–708.Google Scholar
  45. Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66, 59–64.CrossRefGoogle Scholar
  46. Matsumura, F., & Boush, G. M. (1966). Malathion degradation by Trichoderma viride and a Pseudomonas species. Science, 153, 1278–1280.CrossRefGoogle Scholar
  47. Monkiedje, A., Ilori, M. O., & Spiteller, M. (2002). Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology & Biochemistry, 34, 1939–1948.CrossRefGoogle Scholar
  48. Naumann, K. (2000). Influence of chlorine substituents on biological activity of chemicals: A review. Pest Management Science, 56(1), 3–21.CrossRefGoogle Scholar
  49. Niewiadomska, A. (2004). Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pratense L.). Polish Journal of Environmental Studies, 13(4), 403–410.Google Scholar
  50. Ogunseitan, O. A., & Odeyemi, O. (1985). Effects of lindane, captan and malathion on nitrification, sulphur oxidation, phosphate solubilization, and respiration in a tropical soil. Environmental Pollution, 37(1), 343–354.CrossRefGoogle Scholar
  51. Ortiz-Hernández, M. L., Quintero-Ramírez, R., Nava-Ocampo, A. A., & Bello-Ramírez, A. M. (2003). Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides. Fundamental & Clinical Pharmacology, 17(6), 717–723.CrossRefGoogle Scholar
  52. Ortiz-Hernández, M. L., Sánchez-Salinas, E., Dantán-González, E., Castrejón-Godínez, M. L. (2013). Pesticide biodegradation: Mechanisms, genetics and strategies to enhance the process. In R. Chamy, F. Rosenkranz (Eds.), Biodegradation-life of science (pp. 251–287). Intech.Google Scholar
  53. Ortiz-Hernández, M. L., Sánchez-Salinas, E., Olvera-Velona, A., Folch-Mallol, J. L. (2011). Pesticides in the environment: Impacts and its biodegradation as a strategy for residues treatment. In M. Stoytcheva (Ed.), Pesticides-formulations, effects, fate, In-Tech, doi: 10.5772/13534. Available from:
  54. Padmanabhan, P., Padmanabhan, S., DeRito, C., Gray, A., Gannon, D., Snape, J. R., et al. (2003). Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Applied and Environmental Microbiology, 69(3), 1614–1622.CrossRefGoogle Scholar
  55. Pal, R., Chakrabarti, K., Chakraborty, A., & Chowdhury, A. (2006). Degradation and effects of pesticides on soil microbiological parameters-A review. International Journal of Agricultural Research, 1(33), 240–258.Google Scholar
  56. Pallud, C., Dechesne, A., Gaudet, J. P., Debouzia, D., & Grundmann, G. L. (2004). Modification of spatial distribution of 2,4-dichlorophenoxy acetic acid degrader microhabitats during growth in soil columns. Applied and Environmental Microbiology, 70, 2709–2716.CrossRefGoogle Scholar
  57. Park, J. H., Feng, Y., Ji, P., Voice, T. C., & Boyd, S. A. (2003). Assessment of bioavailability of soil-sorbed atrazine. Applied and Environmental Microbiology, 69, 3288–3298.CrossRefGoogle Scholar
  58. Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A., & Casucci, C. (2000). Effects of organic amendment and herbicide treatment on soil microbial biomass. Biology and Fertility of Soils, 32, 17–23.CrossRefGoogle Scholar
  59. Porto, A. L. M., Melgar, G. Z., Kasemodel, M. C., Nitschke, M. (2011). Pesticides in modern world-pesticides use and management. In M. Stoytcheva (Ed.), Biodegradation of pesticides, Chapter 20, p 407. doi: 10.5772/17686
  60. Prakash, N. B., & Devi, L. S. (2000). Persistence of butachlor in soils under different moisture regime. Journal of the Indian Society of Soil Science, 48, 249–256.Google Scholar
  61. Racke, K. D., Coats, J. R. (1990). Enhanced biodegradation of pesticides in the environment. In ACS Symposium Series (No. 426) (pp 53–67). American Chemical Society.Google Scholar
  62. Racke, K. D., Skidmore, M. W., Hamilton, D. J., Unsworth, J. B., Miyamoto, J., & Cohen, S. Z. (1997). Pesticide fate in tropical soil. Pure and Applied Chemistry, 69, 1349–1371.CrossRefGoogle Scholar
  63. Rani, S., & Sud, D. (2015). Effect of temperature on adsorption-desorption behaviour of triazophos in Indian soils. Plant Soil Environment, 61(1), 36–42.CrossRefGoogle Scholar
  64. Rekha, S. N., & Naik, R. P. (2006). Pesticide residue in organic and conventional food-risk analysis. Journal of Chemical Health and Safety, 13, 12–19.CrossRefGoogle Scholar
  65. Sayler, G. S., Hooper, S. W., Layton, A. C., & King, J. M. H. (1990). Catabolic plasmids of environmental and ecological significance. Microbial Ecology, 19, 1–20.CrossRefGoogle Scholar
  66. Schroll, R., Becher, H. H., Dorfler, U., Gayler, S., Grundmann, S., Hartmann, H. P., et al. (2006). Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environmental Science & Technololgy, 40(10), 3305–3312.CrossRefGoogle Scholar
  67. Schroll, R., Brahushi, R., Dorfler, U., Kuhn, S., Fekete, J., & Munch, J. C. (2004). Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environmental Pollution, 127, 395–401.CrossRefGoogle Scholar
  68. Scott, C., Gunjan, P., Carol, J. H., Colin, J. J., Matthew, J. C., Matthew, C. T., et al. (2008). The enzymatic basis for pesticide bioremediation. Indian Journal of Microbiology, 48(1), 65–79.CrossRefGoogle Scholar
  69. Sethunathan, N., & Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinon and parathion. Canadian Journal of Microbiology, 19, 873–875.CrossRefGoogle Scholar
  70. Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 53, 348–351.CrossRefGoogle Scholar
  71. Siddique, T., Okeke, B. C., Arshad, M., & Frankenberger, W. T, Jr. (2003). Biodegradation kinetics of endosulfan by Fusarium vetricosum and a Pandoraea species. Journal of Agricultural and Food Chemistry, 51, 8015–8019.CrossRefGoogle Scholar
  72. Skopp, J., Jawson, M. D., & Doran, J. W. (1990). Steady-state aerobic microbial activity as a function of soil water content. Soil Science Society of America Journal, 54(6), 1619–1625.CrossRefGoogle Scholar
  73. Spyrou, I. M., Karpouzas, D. G., & Menkissoglu-Spiroudi, U. (2009). Do botanical pesticides alter the structure of the soil microbial community. Microbial Ecology, 58, 715–727.CrossRefGoogle Scholar
  74. Suenaga, H., Mitsuoka, M., Ura, Y., Watanable, T., & Furukawa, K. (2001). Directed evolution of biphenyl dioxygenase: Emergence of enhanced degradation capacity for benzene, toluene and alkyl benzenes. Journal of Bacteriology, 183, 5441–5444.CrossRefGoogle Scholar
  75. Sukul, P., & Spiteller, M. (2001). Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere, 45(6), 941–947.CrossRefGoogle Scholar
  76. Tejada, M., García, C., Hernández, T., & Gómez, I. (2015). Response of soil microbial activity and biodiversity in soils polluted with different concentrations of Cypermethrin insecticide. Archives of Environmental Contamination and Toxicology, 69, 8–19.CrossRefGoogle Scholar
  77. Thom, E., Ottow, J. C. G., & Benckiser, G. (1997). Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendment. Environmental Pollution, 96, 409–414.CrossRefGoogle Scholar
  78. Thomas, B., & Parkins, I. B. (1995). Assimilative capacity of subsurface for the pesticides, atrazine and alachlor and nitrate. USA: FEDRIP-Data base, National Technical Information Service (NTIS).Google Scholar
  79. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677.CrossRefGoogle Scholar
  80. Topp, E. T., & Vallaeys, Soulas G. (1997). Pesticides: Microbial degradation and effects on microorganisms. In J. A. van Elsas (Ed.), Modem soil microbiology (pp. 547–573). New York: Marcel Dekker Inc.Google Scholar
  81. UN/DESA. (2008). Changing unsustainable patterns of consumption and production, Johannesburg plan on implementation of the world summit on sustainable development. Johannesburg, 2002 (Chapter III).Google Scholar
  82. Van Herwijnen, R., Van de Sande, B. F., Van der Wielen, F. W. M., Springael, D., Govers, H. A. J., & Parsons, J. R. (2003). Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiology Ecology, 46, 105–111.CrossRefGoogle Scholar
  83. Verma, J. P., Jaiswal, D. K., & Sagar, R. (2014). Pesticide relevance and their microbial degradation: A state-of-art. Reviews in Environmental Science & Biotechnology, 13(4), 429–466.CrossRefGoogle Scholar
  84. Verma, P., Verma, P., & Sagar, R. (2013). Variation in N mineralization and herbaceous species diversity due to sites, seasons, and N treatment in a seasonally dry tropical environment of India. Forest Ecology and Management, 297, 15–26.CrossRefGoogle Scholar
  85. Vollmer, M. D., Hoier, H., Hecht, H. J., Schell, U., Groning, J., Goldman, A., et al. (1998). Substrate specificity of and product formation by muconatecycloisomerases: An analysis of wild type enzyme and engineered variants. Applied and Environmental Microbiology, 64, 3290–3299.Google Scholar
  86. Walter-Echols, G., & Lichtenstein, E. P. (1978). Movement and metabolism of 14C-phorate in a flooded soil system. Journal of Agricultural and Food Chemistry, 26, 599–604.CrossRefGoogle Scholar
  87. Wang, M. C., Gong, M., Zang, H. B., Hua, X. M., Yao, J., Pang, Y. J., et al. (2006). Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. Journal of Environmental Science and Health Part B, 41, 399–413.CrossRefGoogle Scholar
  88. Wang, M. C., Liu, Y. H., Wang, Q., Gong, M., Hua, X. M., Pang, Y. J., et al. (2008). Impacts of methamidophos on the biochemical, catabolic, and genetic characteristics of soil microbial communities. Soil Biology & Biochemistry, 40(3), 778–788.CrossRefGoogle Scholar
  89. Wardle, D. A., & Parkinson, D. (1990). Effects of three herbicides on soil microbial biomass and activity. Plant and Soil, 122(1), 21–28.CrossRefGoogle Scholar
  90. Wood, T. K. (2008). Molecular approaches in bioremediation. Current Opinion in Biotechnology, 19, 572–578.CrossRefGoogle Scholar
  91. Yan, D. Z., Lui, H., & Zhou, N. Y. (2006). Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Applied and Environmental Microbiology, 72, 2283–2286.CrossRefGoogle Scholar
  92. You, M., & Liu, X. (2004). Biodegradation and bioremediation of pesticide pollution. Chinese Journal of Ecology, 23, 73–77.Google Scholar
  93. Yu, Y. L., Chen, Y. X., Luo, Y. M., Pan, X. D., He, Y. F., & Wong, M. H. (2003). Rapid degradation of butachlor in a wheat rhizosphere soil. Chemosphere, 50, 771–774.CrossRefGoogle Scholar
  94. Zacharia, J. T. (2011). Identity, physical and chemical properties of pesticides. In M. Stoytcheva (Ed.), Pesticides in the modern world-trends in pesticides analysis (pp. 1–18). Rijeka: In Tech.Google Scholar
  95. Zhang, W., Xu, J., Dong, F., Liu, X., Zhang, Y., Wu, X., et al. (2014). Effect of tetraconazole application on the soil microbial community. Environmental Science and Pollution Research, 21(13), 8323–8332.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Durgesh Kumar Jaiswal
    • 1
  • Jay Prakash Verma
    • 1
  • Janardan Yadav
    • 2
  1. 1.Institute of Environment and Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Soil Science and Agricultural Chemistry, Institute of Agriculture SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations