Towards a Cloud-Native Radio Access Network

  • Navid Nikaein
  • Eryk Schiller
  • Romain Favraud
  • Raymond Knopp
  • Islam Alyafawi
  • Torsten Braun
Part of the Studies in Big Data book series (SBD, volume 22)


Commoditization and virtualization of wireless networks are changing the economics of mobile networks to help network providers, e.g. Mobile Network Operator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary and bespoke hardware and software platforms towards an open, cost-effective, and flexible cellular ecosystem. In addition, rich and innovative local services can be efficiently materialized through cloudification by leveraging the existing infrastructure. In this work, we present a Radio Access Network as a Service (RANaaS), in which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines in many examples of RAN, the fluctuations of processing time, introduced by the virtualization framework, have a deep impact on the C-RAN performance. While in typical cloud environments, the deadlines of processing time cannot be guaranteed, the cloudification of C-RAN, in which signal processing runs on general purpose processors inside Virtual Machines (VMs), is a challenging subject. We describe an example of real-time cloudified LTE network deployment using the OpenAirInterface (OAI) LTE implementation and OpenStack running on commodity hardware. We also show the flexibility and performance of the platform developed. Finally, we draw general conclusions on the RANaaS provisioning problem in future 5G networks.


Radio Access Network Cloud Infrastructure Single Instruction Multiple Data Mobile Network Operator European Telecommunication Standard Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alyafawi, I., Schiller, E., Braun, T., Dimitrova, D., Gomes, A., Nikaein, N.: Critical issues of centralized and cloudified lte-fdd radio access networks. In: 2015 IEEE International Conference on Communications (ICC), pp. 5523–5528 (2015). doi: 10.1109/ICC.2015.7249202
  2. 2.
    Amari LTE 100, a Software LTE Base Station on a PC.
  3. 3.
    Berardinelli, G., Ruiz de Temino, L., Frattasi, S., Rahman, M., Mogensen, P.: Ofdma vs. sc-fdma: performance comparison in local area imt-a scenarios. IEEE Wirel. Commun. 15(5), 64–72 (2008). doi: 10.1109/MWC.2008.4653134
  4. 4.
    Bhaumik, S., Chandrabose, S.P., Jataprolu, M.K., Kumar, G., Muralidhar, A., Polakos, P., Srinivasan, V., Woo, T.: Cloudiq: a framework for processing base stations in a data center. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Mobicom ’12, pp. 125–136. ACM, New York, NY, USA (2012). doi: 10.1145/2348543.2348561
  5. 5.
    Chanclou, P., Pizzinat, A., Le Clech, F., Reedeker, T.L., Lagadec, Y., Saliou, F., Le Guyader, B., Guillo, L., Deniel, Q., Gosselin, S., Le, S., Diallo, T., Brenot, R., Lelarge, F., Marazzi, L., Parolari, P., Martinelli, M., O’Dull, S., Gebrewold, S., Hillerkuss, D., Leuthold, J., Gavioli, G., Galli, P.: Optical fiber solution for mobile fronthaul to achieve cloud radio access network. In: Future Network and Mobile Summit (FutureNetworkSummit) 2013, pp. 1–11 (2013)Google Scholar
  6. 6.
    Checko, A., Christiansen, H., Yan, Y., Scolari, L., Kardaras, G., Berger, M., Dittmann, L.: Cloud ran for mobile networks—a technology overview. IEEE Commun. Surv. Tutorials 17(1), 405–426 (2015). doi: 10.1109/COMST.2014.2355255 CrossRefGoogle Scholar
  7. 7.
    China Mobile Research Institute: C-RAN White Paper: The Road Towards Green RAN. (2013)
  8. 8.
    Costa-Perez, X., Swetina, J., Guo, T., Mahindra, R., Rangarajan, S.: Radio access network virtualization for future mobile carrier networks. IEEE Commun. Mag. 51(7), 27–35 (2013). doi: 10.1109/MCOM.2013.6553675 CrossRefGoogle Scholar
  9. 9.
    Dahlman, E., Parkvall, S., Skold, J.: 4G LTE/LTE-Advanced for Mobile Broadband, 1st edn. Academic Press (2011)Google Scholar
  10. 10.
    ETSI: Network Functions Virtualisation (NFV), White paper. Technical report, ETSI (2014)Google Scholar
  11. 11.
    EU FP7 Mobile Cloud Networking public deliverable D2.5: Final Overall Architecture Definition. Technical report, EU (2015)Google Scholar
  12. 12.
    EURECOM: Open Air Interface.
  13. 13.
    Haberland, B., Derakhshan, F., Grob-Lipski, H., Klotsche, R., Rehm, W., Schefczik, P., Soellner, M.: Radio base stations in the cloud. Bell Labs Tech. J. 18(1), 129–152 (2013). doi: 10.1002/bltj.21596
  14. 14.
    Interworking and JOINt Design of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks (iJOIN): an FP7 STREP project co-funded by the European Commission.
  15. 15.
    Mobile Cloud Networking (MCN): an FP7 IP project co-funded by the European Commission.
  16. 16.
    NGMN: Further Study on Critical C-RAN Technologies (v0.6). Technical report, The Next Generation Mobile Networks (NGMN) Alliance (2013)Google Scholar
  17. 17.
    NGMN: Suggestions on Potential Solutions to C-RAN by NGMN Alliance. Technical report, The Next Generation Mobile Networks (NGMN) Alliance (2013)Google Scholar
  18. 18.
    Nikaein, N.: Processing radio access network functions in the cloud: critical issues and modeling. In: Proceedings of the 6th International Workshop on Mobile Cloud Computing and Services, MCS’15, pp. 36–43. ACM, New York, NY, USA (2015). doi: 10.1145/2802130.2802136
  19. 19.
    Nikaein, N., Knopp, R., Gauthier, L., Schiller, E., Braun, T., Pichon, D., Bonnet, C., Kaltenberger, F., Nussbaum, D.: Demo—closer to Cloud-RAN: RAN as a service. In: Proceedings of ACM MOBICOM Demonstrations (2015). doi: 10.1145/2789168.2789178
  20. 20.
    Nikaein, N., Knopp, R., Kaltenberger, F., Gauthier, L., Bonnet, C., Nussbaum, D., Ghaddab, R.: OpenAirInterface 4G: an open LTE network in a PC. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom ’14, pp. 305–308. ACM, New York, NY, USA (2014). doi: 10.1145/2639108.2641745
  21. 21.
    Nikaein, N., Schiller, E., Favraud, R., Katsalis, K., Stavropoulos, D., Alyafawi, I., Zhao, Z., Braun, T., Korakis, T.: Network store: exploring slicing in future 5g networks. In: Proceedings of the 10th International Workshop on Mobility in the Evolving Internet Architecture, MobiArch’15, pp. 8–13. ACM, New York, NY, USA (2015). doi: 10.1145/2795381.2795390
  22. 22.
    Oracle: Oracle Cloud, Enterprise-Grade Cloud Solutions: SaaS, PaaS, and IaaS.
  23. 23.
    Patel, M., Joubert, J., Ramos, J.R., Sprecher, N., Abeta, S., Neal, A.: Mobile-Edge Computing. Technical report, ETSI, white paper (2014)Google Scholar
  24. 24.
    Scalable and Adaptive Internet Solutions (SAIL): an FP7 IP project co-funded by the European Commission.
  25. 25.
    Schooler, R.: Transforming Networks with NFV & SDN. Intel Architecture Group (2013)Google Scholar
  26. 26.
    Wilder, B.: Cloud Architecture Patterns. O’Reilly (2012)Google Scholar
  27. 27.
    Wubben, D., Rost, P., Bartelt, J., Lalam, M., Savin, V., Gorgoglione, M., Dekorsy, A., Fettweis, G.: Benefits and impact of cloud computing on 5g signal processing: flexible centralization through cloud-ran. IEEE Signal Process. Mag. 31(6), 35–44 (2014). doi: 10.1109/MSP.2014.2334952 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Navid Nikaein
    • 1
  • Eryk Schiller
    • 3
  • Romain Favraud
    • 1
    • 2
  • Raymond Knopp
    • 1
  • Islam Alyafawi
    • 3
  • Torsten Braun
    • 3
  1. 1.EURECOMBiotFrance
  2. 2.DCNS GroupParisFrance
  3. 3.University of BernBernSwitzerland

Personalised recommendations