Dimensions of User Behavior in Enterprise Social Networks

Chapter
Part of the Knowledge Management and Organizational Learning book series (IAKM, volume 3)

Abstract

The analysis of user behavior in online communities is a prominent topic in social media research. As such, user behavior is often analyzed using a set of metrics that describe the user’s participation behavior and structural position in the social network. Yet, for Enterprise Social Networks (ESN), i.e. internally used social networking platforms, such research is lacking. While prior studies have found users to engage in knowledge-intensive interactions, e.g. discussing and developing new ideas, little is known about how to conceptualize and measure ESN user behavior. Being able to measure user behavior, however, is an important prerequisite for the identification of knowledge management-related roles in the context of ESN.

Against this backdrop, in this chapter we derive 30 metrics that characterize the participation behavior, message content and structural position of ESN users of an Australian professional services firm. Based on a factor analysis, we identify nine distinct dimensions of ESN user behavior: Social dispersion, engagement, focus, information sharing, discussing, information seeking, response time, receiving information, and tagging. With this research we contribute to the literature by transferring concepts and methods of organization science and social media research to an ESN context. Further, our approach forms the basis for the identification of different types of knowledge actors, which might ultimately help to improve organizational knowledge transparency.

References

  1. Allen, J., James, A. D., & Gamlen, P. (2007). Formal versus informal knowledge networks in R&D: A case study using social network analysis. R&D Management, 37, 179–196.CrossRefGoogle Scholar
  2. Angeletou, S., Rowe, M., & Alani, H. (2011). Modelling and analysis of user behaviour in online communities. In L. Aroyo, C. Welty, H. Alani, et al. (Eds.), The semantic web—ISWC 2011 (pp. 35–50). Heidelberg: Springer.CrossRefGoogle Scholar
  3. Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2011). Multivariate Analysemethoden: Eine anwendungsorientierte Einführung (13 ed.). Heidelberg: Springer.CrossRefGoogle Scholar
  4. Bala, H., Massey, A. P., Rajanayakam, J., & Hsieh, C. J. (2015). Challenges and outcomes of enterprise social media implementation: insights from cummins, Inc. In 2015 48th Hawaii International Conference on System Sciences (pp. 1839–1848). IEEE.Google Scholar
  5. Behrendt, S., Richter, A., & Riemer, K. (2014). Conceptualisation of digital traces for the identification of informal networks in enterprise social networks. In Proceedings of the 25th Australasian Conference on Information Systems, Auckland, New Zealand.Google Scholar
  6. Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis. Educational and Psychological Measurement, 65, 676–696.CrossRefGoogle Scholar
  7. Brown, J. S., & Duguid, P. (2001a). Structure and spontaneity: Knowledge and organization. In I. Nonaka & D. J. Teece (Eds.), Managing industrial knowledge: Creation transfer and utilization (pp. 44–67). London: SAGE Publications.CrossRefGoogle Scholar
  8. Brown, J. S., & Duguid, P. (2001b). Knowledge and organization: A social-practice perspective. Organization Science, 12, 198–213.CrossRefGoogle Scholar
  9. Burns, M. J., & Kotval, X. P. (2013). Questions about questions: Investigating how knowledge workers ask and answer questions. Bell Labs Technical Journal, 17, 43–61.CrossRefGoogle Scholar
  10. Chan, K., & Liebowitz, J. (2006). The synergy of social network analysis and knowledge mapping: A case study. International Journal of Management and Decision Making, 7, 19–35.CrossRefGoogle Scholar
  11. Chan, J., Hayes, C., & Daly, E. (2010). Decomposing discussion forums and boards using user roles. In W. W. Cohen & S. Gosling (Eds.), International AAAI Conference on Weblogs and Social Media 2010. (pp. 215–218). The AAAI Press.Google Scholar
  12. Core Team, R. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing http://www.r-project.org/.Google Scholar
  13. Cross, R., & Prusak, L. (2002). The people who make organizations go—or stop effectiveness. Harvard Business Review, 80, 104–112.Google Scholar
  14. Cross, R., Borgatti, S. P., & Parker, A. (2001a). Beyond answers: Dimensions of the advice network. Social Networks, 23, 215–235.CrossRefGoogle Scholar
  15. Cross, R., Parker, A., Prusak, L., & Borgatti, S. P. (2001b). Knowing what we know: Supporting knowledge creation and sharing in social networks. Organizational Dynamics, 30, 100–120.CrossRefGoogle Scholar
  16. Cross, R., Borgatti, S. P., & Parker, A. (2002). Making invisible work visible: Using social network analysis to support strategic collaboration. California Management Review, 44, 25–47.CrossRefGoogle Scholar
  17. Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. International Journal of Complex Systems 1695.Google Scholar
  18. Davenport, T. H., & Prusak, L. (1998). Working knowledge: How organizations manage what they know. Boston, MA: Harvard Business School Press.Google Scholar
  19. De Toni, A. F., & Nonino, F. (2010). The key roles in the informal organization: A network analysis perspective. The Learning Organization, 17, 86–103.CrossRefGoogle Scholar
  20. Eppler, M. J. (2001). Making knowledge visible through intranet knowledge maps: Concepts, elements, cases. In Proceedings of the 34th Annual Hawaii International Conference on System Sciences, Maui, HI.Google Scholar
  21. Fischbach, K., Schoder, D., & Gloor, P. A. (2008). Analyse informeller Kommunikationsnetzwerke am Beispiel einer Fallstudie. Wirtschaftsinformatik, 51, 164–174.CrossRefGoogle Scholar
  22. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1, 215–239.CrossRefGoogle Scholar
  23. Friemel, T. N. (2008). Netzwerkanalytische Methoden zur Identifizierung von Kommunikationsrollen. In C. Stegbauer (Ed.), Netzwerkanalyse und Netzwerktheorie (pp. 179–190). VS Verlag für Sozialwissenschaften.Google Scholar
  24. Füller, J., Hutter, K., Hautz, J., & Matzler, K. (2014). User roles and contributions in innovation-contest communities. Journal of Management Information Systems, 31, 273–308.CrossRefGoogle Scholar
  25. Gartner. (2013). Magic quadrant for social software in the workplace. https://www.jivesoftware.com/discover-jive/analyst-reports/gartner-magic-quadrant/.
  26. Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. In ACM Conference on Human Factors in Computing Systems (pp. 211–220). ACM Press.Google Scholar
  27. Gleave, E., Welser, H., Lento, T. M., & Smith, M. A. (2009). A Conceptual and operational definition of “Social Role” in online community. In 2009 42nd Hawaii International Conference on System Sciences (pp. 1–11). IEEE.Google Scholar
  28. Grant, A. (2013). In the company of givers and takers. Harvard Business Review, 91, 90–97.Google Scholar
  29. Gries, S. T. (2013). Statistics for linguistics with R: A practical introduction. Boston: De Gruyter Mouton.CrossRefGoogle Scholar
  30. Hansen, D. L., Shneiderman, B., & Smith, M. A. (2010). Visualizing threaded conversation networks: Mining message boards and email lists for actionable insights. In A. An, P. Lingras, S. Petty, & R. Huang (Eds.), Active media technology (pp. 47–62). Heidelberg: Springer.CrossRefGoogle Scholar
  31. Hansen, M. T., Nohria, N., & Tierney, T. (1999). What’s your strategy for managing knowledge? Harvard Business Review, 77, 106–116.Google Scholar
  32. Helms, R., & Buijsrogge, K. (2005). Knowledge network analysis: A technique to analyze knowledge management bottlenecks in organizations. In 16th International Workshop on Database and Expert Systems Applications (DEXA’05) (pp. 410–414). Copenhagen: IEEE.Google Scholar
  33. Helms, R., & Buijsrogge, K. (2006). Application of knowledge network analysis to identify knowledge sharing bottlenecks at an engineering firm. In Proceedings of the 14th European Conference on Information Systems, Göteborg, Sweden.Google Scholar
  34. Hildebrandt, A., Jäckle, S., Wolf, F., & Heindl, A. (2015). Methodologie, Methoden, Forschungsdesign. Wiesbaden: Springer Fachmedien Wiesbaden. doi:10.1007/978-3-531-18993-2.CrossRefGoogle Scholar
  35. Holtzblatt, L., Drury, J., & Weiss, D. (2013). Evaluating the uses and benefits of an enterprise social media platform. Journal of Social Media and Organ, 1, 1–21.Google Scholar
  36. Koch, M., Richter, A., & Schlosser, A. (2007). Produkte zum IT-gestützten social networking in unternehmen. Wirtschaftsinformatik, 49, 448–455.CrossRefGoogle Scholar
  37. Krackhardt, D., & Hanson, J. R. (1993). Informal networks: The company behind the charts. Harvard Business Review, 71, 104–111.Google Scholar
  38. von Krogh, G. (2012). How does social software change knowledge management? Toward a strategic research agenda. The Journal of Strategic Information Systems, 21, 154–164.CrossRefGoogle Scholar
  39. Lehner, F. (2014). Wissensmanagement. München: Carl Hanser Verlag GmbH & Co. KG.CrossRefGoogle Scholar
  40. McAfee, A. P. (2006). Enterprise 2.0: The dawn of emergent collaboration. MIT Sloan Management Review, 47, 21–28.Google Scholar
  41. McIver, D., Lengnick-Hall, C. A., Lengnick-Hall, M. L., & Ramachandran, I. (2012). Integrating knowledge and knowing: A framework for understanding knowledge-in-practice. Human Resource Management Review, 22, 86–99.CrossRefGoogle Scholar
  42. Newk-Fon Hey Tow, W., Venable, J., & Dell, P. (2012). How organisations know what they know: A survey of knowledge identification methods among Australian organisations. In Proceedings of the 23rd Australasian Conference on Information Systems, Geelong, Australia.Google Scholar
  43. Parise, S., Cross, R., & Davenport, T. H. (2006). Strategies for preventing a knowledge-loss crisis. MIT Sloan Management Review, 47, 31–38.Google Scholar
  44. Parise, S., Cross, R., & Davenport, T. H. (2005). It’s not what but who you know: How organizational network analysis can help address knowledge loss crises. Retrieved April 27, 2016, from http://www.robcross.org/pdf/roundtable/lost_knowledge.pdf.
  45. Perer, A., Guy, I., Uziel, E., Ronen, I. & Jacovi, M. (2011). Visual social network analytics for relationship discovery in the enterprise. In VAST 2011—IEEE Conference on Visual Analytics Science and Technology 2011, Proceedings (pp. 71–79). IEEE.Google Scholar
  46. Probst, F., Grosswiele, L., & Pfleger, R. (2013). Who will lead and who will follow: Identifikation einflussreicher Nutzer in Online Social Networks. Wirtschaftsinformatik, 55, 175–192.CrossRefGoogle Scholar
  47. Revelle, W. (2015). Psych: Procedures for psychological, psychometric, and personality research. Retrieved April 27, 2016, from http://cran.r-project.org/package=psych.
  48. Richter, A. (2010). Der Einsatz von Social Networking Services in Unternehmen. Wiesbaden: Gabler.CrossRefGoogle Scholar
  49. Richter, A, & Riemer, K. (2009). Corporate social networking sites—modes of use and appropriation through co-evolution. In Proceedings of the 20th Australasian Conference on Information Systems, Melbourne, Australia.Google Scholar
  50. Richter, A., & Riemer, K. (2013). The contextual nature of enterprise social networking: A multi case study comparison. In Proceedings of the 21st European Conference on Information Systems, Utrecht, The Netherlands.Google Scholar
  51. Riemer, K., & Scifleet, P. (2012). Enterprise social networking in knowledge-intensive work practices: A case study in a professional service firm. In Proceedings of the 23rd Australasian Conference on Information Systems, Geelong, Australia.Google Scholar
  52. Rowe, M., & Alani, H. (2012). What makes communities tick? Community health analysis using role compositions. In Proceedings—2012 ASE/IEEE International Conference on Privacy, Security, Risk and Trust and 2012 ASE/IEEE International Conference on Social Computing, SocialCom/PASSAT 2012 (pp. 267–276). IEEE.Google Scholar
  53. Rowe, M., Fernandez, M., Angeletou, S., & Alani, H. (2013). Community analysis through semantic rules and role composition derivation. Web Semantics: Science, Services and Agents on the World Wide Web, 18, 31–47.CrossRefGoogle Scholar
  54. Sachs, L. (1978). Angewandte Statistik. Statistische Methoden und ihre Anwendungen. Heidelberg: Springer.Google Scholar
  55. Schendera, C. F. (2010). Clusteranalyse mit SPSS. München: Oldenbourg Wissenschaftsverlag.CrossRefGoogle Scholar
  56. Schneckenberg, D. (2009). Web 2.0 and the empowerment of the knowledge worker. Journal of Knowledge Management, 13, 509–520.CrossRefGoogle Scholar
  57. Thom, J., Helsley, S., Matthews, T. L., Daly, E. M., & Millen, D. R. (2011). What are you working on? Statusmessage Q&A in an enterprise SNS. In S. Bødker, N. O. Bouvin, V. Wulf, et al. (Eds.), ECSCW2011: Proceedings of the 12th European Conference on Computer Supported Cooperative Work (pp. 313–332). London: Springer.Google Scholar
  58. Trier, M., & Richter, A. (2015). The deep structure of organizational online networking—an actor-oriented case study. Information Systems Journal, 25, 465–488.CrossRefGoogle Scholar
  59. Viegas, F. B., & Smith, M. (2004). Newsgroup Crowds and AuthorLines: Visualizing the activity of individuals in conversational cyberspaces. In Proceedings of the 37th Annual Hawaii International Conference on System Sciences, Big Island, HI.Google Scholar
  60. Viol, J., Bernsmann, R., & Riemer, K. (2015). Behavioural dimensions for discovering knowledge actor roles utilising enterprise social network metrics. In Proceedings of the 26th Australasian Conference on Information Systems, Adelaide, Australia.Google Scholar
  61. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Welser, H. T., Gleave, E., Fisher, D., & Smith, M. A. (2007). Visualizing the signatures of social roles in online discussion groups finding social roles in online discussion. Journal of Social Structure, 8, 1–32.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Information SystemsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.The University of Sydney Business SchoolUniversity of SydneySydneyAustralia

Personalised recommendations