Cell Wall Development in an Elongating Internode of Setaria

  • Anthony P. Martin
  • Christopher W. Brown
  • Duc Q. Nguyen
  • William M. Palmer
  • Robert T. Furbank
  • Caitlin S. Byrt
  • Christopher J. Lambrides
  • Christopher P. L. GrofEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 19)


Although Setaria has been proposed as a model to investigate C4 photosynthesis, it may also be considered a suitable representative for biofuel feedstock species that are predominantly closely related panicoid grasses. In order to extend our understanding of the fundamental molecular and physiological mechanisms underpinning cell wall deposition as they occur during plant development, we have investigated an elongating stem internode of S. viridis. The chosen internode progressed from an active meristem and region of cell expansion at the base of the internode towards maturing fully expanded cells at the top of the internode. Along this developmental gradient, RNAseq of the mRNA fraction of the transcriptome was undertaken. A holistic understanding of the synthesis, composition and structure of the cell wall and the molecular mechanisms that signal the transition from primary to secondary cell wall synthesis will be integral to engineering crops with a structure that lends itself to more efficient deconstruction.


Cell wall Stem Internode Transcriptome Panicoid grass Setaria 


  1. Abreu HS, Latorraca JVF, Pereira RPW, Monteiro MBO, Abreu FA, Amparado KF. A supramolecular proposal of lignin structure and its relation with the wood properties. An Acad Bras Cienc. 2009;81:137–42.CrossRefPubMedGoogle Scholar
  2. Alejandro S, Lee Y, Tohge T, et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol. 2012;22:1207–12.CrossRefPubMedGoogle Scholar
  3. Aohara T, Kotake T, Kaneko Y, Takatsuji H, Tsumuraya Y, Kawasaki S. Rice BRITTLE CULM 5 (BRITTLE NODE) is involved in secondary cell wall formation in the sclerenchyma tissue of nodes. Plant Cell Physiol. 2009;50:1886–97.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga K. Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose. 2004;11:287–99.CrossRefGoogle Scholar
  5. Arioli T, Peng L, Betzner AS, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 1998;279:717–20.CrossRefPubMedGoogle Scholar
  6. Bar-Peled M, O’Neill MA. Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol. 2011;62:127–55.CrossRefPubMedGoogle Scholar
  7. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.CrossRefPubMedGoogle Scholar
  8. Boija E, Johansson G. Interactions between model membranes and lignin-related compounds studied by immobilized liposome chromatography. Biochim Biophys Acta Biomembr. 1758;2006:620–6.Google Scholar
  9. Bootten TJ, Harris PJ, Melton LD, Newman RH. Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall. J Exp Bot. 2004;55:571–83.CrossRefPubMedGoogle Scholar
  10. Bosch M, Mayer CD, Cookson A, Donnison IS. Identification of genes involved in cell wall biogenesis in grasses by differential gene expression profiling of elongating and non-elongating maize internodes. J Exp Bot. 2011;62:3545–61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell. 2010;22:2537–44.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bunzel M, Ralph J, Brüning P, Steinhart H. Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem. 2006;54:6409–18.CrossRefPubMedGoogle Scholar
  13. Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, Stone BA, Newbigin EJ, Bacic A, Fincher GB. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-beta-D-glucans. Science. 2006;311:1940–2.CrossRefPubMedGoogle Scholar
  14. Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J. 1997;326:929–39.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carpita NC. Hemicellulosic polymers of cell walls of Zea coleoptiles. Plant Physiol. 1983;72:515–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carpita NC. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1 → 4)-β-D-Glycans. Plant Physiol. 2011;155:171–84.CrossRefPubMedGoogle Scholar
  17. Carpita NC. Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol. 2012;23:330–7.CrossRefPubMedGoogle Scholar
  18. Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 2001;127:551–65.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Casu RE, Jarmey JM, Bonnett GD, Manners JM. Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics. 2007;7:153–67.CrossRefPubMedGoogle Scholar
  20. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S. Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem. 2013;72:1–20.CrossRefPubMedGoogle Scholar
  21. Collins HM, Burton RA, Topping DL, Liao M-L, Bacic A, Fincher GB. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: potential importance in human health and nutrition. Cereal Chem. 2010;87:272–82.CrossRefGoogle Scholar
  22. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6:850–61.CrossRefPubMedGoogle Scholar
  23. Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–52.CrossRefPubMedGoogle Scholar
  24. de Oliveira Buanafina MM. Feruloylation in grasses: current and future perspectives. Mol Plant. 2009;2:861–72.CrossRefGoogle Scholar
  25. de Oliveira Buanafina MM, Cosgrove DJ. Cell walls: structure and biogenesis. In: Sugarcane: physiology, biochemistry and functional biology. New York: Wiley; 2013. p. 307–329.Google Scholar
  26. Devos KM. Updating the “crop circle”. Curr Opin Plant Biol. 2005;8:155–62.CrossRefPubMedGoogle Scholar
  27. Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 2009;106:5996–6001.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Doblin MS, Pettolino F, Bacic A. Evans review : plant cell walls: the skeleton of the plant world. Funct Plant Biol. 2010;37:357–81.CrossRefGoogle Scholar
  29. Doering A, Lathe R, Persson S. An update on xylan synthesis. Mol Plant. 2012;5:769–71.CrossRefPubMedGoogle Scholar
  30. Ehlting J, Mattheus N, Aeschliman DS, et al. Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J. 2005;42:618–40.CrossRefPubMedGoogle Scholar
  31. Emons AMC, Mulder BM. The making of the architecture of the plant cell wall: how cells exploit geometry. Proc Natl Acad Sci U S A. 1998;95:7215–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Faik A. Xylan biosynthesis: news from the grass. Plant Physiol. 2010;153:396–402.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC. Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci U S A. 2011;108:1195–203.CrossRefGoogle Scholar
  34. Hansen SF, Harholt J, Oikawa A, Scheller HV. Plant glycosyltransferases beyond CAZy: a perspective on DUF families. Front Plant Sci. 2012;3:59.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol. 2014;49:212–41.CrossRefPubMedGoogle Scholar
  36. Harholt J, Suttangkakul A, Scheller HV. Biosynthesis of pectin. Plant Physiol. 2010;153:384–95.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hatfield R, Vermerris W. Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol. 2001;126:1351–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. He L, Terashima N. Formation and structure of lignin in monocotyledons IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforsch Int J Biol Chem Phys Technol Wood. 1991;45:191.Google Scholar
  39. Hill JL, Hammudi MB, Tien M. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry. Plant Cell. 2014;26:4834–42.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hirano K, Aya K, Morinaka Y, Nagamatsu S, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M. Survey of genes involved in rice secondary cell wall formation through a co-expression network. Plant Cell Physiol. 2013;54:1803–21.CrossRefPubMedGoogle Scholar
  41. Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C. New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem. 1995;43:2746–51.CrossRefGoogle Scholar
  42. Kaneda M, Rensing KH, Wong JCT, Banno B, Mansfield SD, Samuels AL. Tracking monolignols during wood development in Lodgepole pine. Plant Physiol. 2008;147:1750–60.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC transporters. Arabidopsis Book. 2011;9:e0153.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kim J-B, Olek AT, Carpita NC. Cell wall and membrane-associated Exo-β-d-glucanases from developing maize seedlings. Plant Physiol. 2000;123:471–86.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis. Plant Cell. 1999;11:2075–86.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kokubo A, Sakurai N, Kuraishi S, Takeda K. Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol. 1991;97:509–14.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Koutaniemi S. Lignin biosynthesis in Norway spruce: from a model system to the tree. 2007. Ph.D. thesis, University of Helsinki.Google Scholar
  48. Larkin P. Infrared and Raman spectroscopy; principles and spectral interpretation. 1st ed.; 2011. ISBN 9780123869845.Google Scholar
  49. Lattanzio V, Lattanzio VMT, Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Phytochemistry: advances in research. Kerala, India: Research Signpost; 2006. p. 23–45.Google Scholar
  50. Li X, Weng JK, Chapple C. Improvement of biomass through lignin modification. Plant J. 2008;54:569–81.CrossRefPubMedGoogle Scholar
  51. Liu CJ. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant. 2012;5:304–17.CrossRefPubMedGoogle Scholar
  52. Martin AP, Palmer WM, Byrt CS, Furbank RT, Grof CP. A holistic high-throughput screening framework for biofuel feedstock assessment that characterises variations in soluble sugars and cell wall composition in Sorghum bicolor. Biotechnol Biofuels. 2013;6:186.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Martin AP, Palmer WM, Brown C, Abel C, Lunn JE, Furbank RT, Grof CPL. A developing Setaria viridis internode: an experimental system for the study of biomass generation in a C4 model species. Biotechnol Biofuels. 2016;9:45.CrossRefPubMedPubMedCentralGoogle Scholar
  54. McCann MC, Carpita NC. Designing the deconstruction of plant cell walls. Curr Opin Plant Biol. 2008;11:314–20.CrossRefPubMedGoogle Scholar
  55. McFarlane HE, Döring A, Persson S. The cell biology of cellulose synthesis. Annu Rev Plant Biol. 2014;65:69–94.CrossRefPubMedGoogle Scholar
  56. Mitchell RA, Dupree P, Shewry PR. A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol. 2007;144:43–53.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Morikawa H, Senda M. Infrared analysis of oat coleoptile cell walls and oriented structure of matrix polysaccharides in the walls. Plant Cell Physiol. 1978;19:327–36.Google Scholar
  58. Mortimer JC, Miles GP, Brown DM, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci U S A. 2010;107:17409–14.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mouille G, Robin S, Lecomte M, Pagant S, Hofte H. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. Plant J. 2003;35:393–404.CrossRefPubMedGoogle Scholar
  60. Mutwil M, Debolt S, Persson S. Cellulose synthesis: a complex complex. Curr Opin Plant Biol. 2008;11:252–7.CrossRefPubMedGoogle Scholar
  61. Nakashima J, Chen F, Jackson L, Shadle G, Dixon RA. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa): effects on lignin composition in specific cell types. New Phytol. 2008;179:738–50.CrossRefPubMedGoogle Scholar
  62. Niimura H, Yokoyama T, Kimura S, Matsumoto Y, Kuga S. AFM observation of ultrathin microfibrils in fruit tissues. Cellulose. 2010;17:13–8.CrossRefGoogle Scholar
  63. Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. Plant Physiol. 2015;168:3–17.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Parameswaran N, Liese W. On the fine structure of bamboo fibres. Wood Sci Technol. 1976;10:231–46.Google Scholar
  65. Park YB, Cosgrove DJ. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol. 2012;158:1933–43.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Park YB, Cosgrove DJ. Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol. 2015;56:180–94.CrossRefPubMedGoogle Scholar
  67. Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.CrossRefPubMedGoogle Scholar
  68. Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G. Hemicellulose biosynthesis. Planta. 2013;238:627–42.CrossRefPubMedGoogle Scholar
  69. Penning BW, Hunter CT, Tayengwa R, et al. Genetic resources for maize cell wall biology. Plant Physiol. 2009;151:1703–28.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ralph J, Grabber JH, Hatfield RD. Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr Res. 1995;275:167–78.CrossRefGoogle Scholar
  71. Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol. 2014;26:100–7.CrossRefPubMedGoogle Scholar
  72. Richmond T. Higher plant cellulose synthases. Genome Biol. 2000;1:reviews 3001.1–3001.6.CrossRefGoogle Scholar
  73. Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Saha J, Sengupta A, Gupta K, Gupta B. Molecular phylogenetic study and expression analysis of ATP-binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput Biol Chem. 2015;54:18–32.CrossRefPubMedGoogle Scholar
  75. Sattler SE, Funnell-Harris DL. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens? Front Plant Sci. 2013;4:70. doi: 10.3389/fpls.2013.00070.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61:263–89.CrossRefPubMedGoogle Scholar
  77. Sibout R, Höfte H. Plant cell biology: the ABC of monolignol transport. Curr Biol. 2012;22:533–5.CrossRefGoogle Scholar
  78. Sindhu A, Langewisch T, Olek A, Multani DS, McCann MC, Vermerris W, Carpita NC, Johal G. Maize Brittle stalk2 encodes a COBRA-like protein expressed in early organ development but required for tissue flexibility at maturity. Plant Physiol. 2007;145:1444–59.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003;133:73–83.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Taylor NG. Cellulose biosynthesis and deposition in higher plants. New Phytol. 2008;178:239–52.CrossRefPubMedGoogle Scholar
  81. Torres AF, Visser RGF, Trindade LM. Bioethanol from maize cell walls: genes, molecular tools, and breeding prospects. GCB Bioenerg. 2015;7:591–607.CrossRefGoogle Scholar
  82. Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153:895–905.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11:301–7.CrossRefPubMedGoogle Scholar
  84. Wilkerson CG, Mansfield SD, Lu F, et al. Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science. 2014;344:90–3.CrossRefPubMedGoogle Scholar
  85. Wilson SM, Ho YY, Lampugnani ER, Van de Meene AML, Bain MP, Bacic A, Doblin MS. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-Glucan in grasses. Plant Cell. 2015;27:754–71.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu XG. Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research. Plant Mol Biol. 2013;83:77–87.CrossRefPubMedGoogle Scholar
  87. York WS, O’Neill MA. Biochemical control of xylan biosynthesis—which end is up? Curr Opin Plant Biol. 2008;11:258–65.CrossRefPubMedGoogle Scholar
  88. Zeng W, Jiang N, Nadella R, Killen TL, Nadella V, Faik A. A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively. Plant Physiol. 2010;154:78–97.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang QS, Cheetamun R, Dhugga KS, et al. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biol. 2014;14:27–46. doi: 10.1186/1471-2229-14-27.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhong R, Ye Z-H. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 2015;56:195–214.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Anthony P. Martin
    • 1
  • Christopher W. Brown
    • 1
  • Duc Q. Nguyen
    • 1
  • William M. Palmer
    • 1
  • Robert T. Furbank
    • 2
  • Caitlin S. Byrt
    • 3
  • Christopher J. Lambrides
    • 4
  • Christopher P. L. Grof
    • 1
    Email author
  1. 1.University of NewcastleNewcastleAustralia
  2. 2.Australian Research Council Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of BiologyThe Australian National UniversityActonAustralia
  3. 3.School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideUrrbraeAustralia
  4. 4.The University of Queensland, School of Agriculture and Food SciencesQldAustralia

Personalised recommendations