Skip to main content

Thin Die Fabrication and Applications to Wafer Level System Integration

  • Chapter
  • First Online:
Materials for Advanced Packaging

Abstract

Thin die fabrication is an essential part of wafer processes in 3D IC, interposer, and fan-in and fan-out wafer level packaging technologies. A review on the available process technologies including temporary bonding, de-bonding, wafer thinning, thin wafer handling, thin wafer backside processes, and die singulation are discussed and summarized in this chapter. The fabricated thin dies are integrated and assembled using wafer level system integration (WLSI) processes. A brief summary on two important WLSI technology platforms, namely Chip-on-Wafer-on-Substrate (CoWoS™) and Integrated Fan-Out (InFO) are presented as a conclusion for thin die fabrication and wafer level system integration chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://multimedia.3m.com/mws/media/634385O/3mtm-wafer-support-system-brochure.pdf

  2. http://www.brewerscience.com

  3. https://www.suss.com/fileadmin/user_upload/echnical_publications/thin_wafer_handling_temporary_wafer_bonding.pdf

  4. http://www.circuitnet.com/news/uploads/1/DuPont_WLP_Solutions_.pdf

  5. Tamura K et al (2010) Proceedings 60th electronic components and technology conference (ECTC), 2010, Las Vegas, pp 1239–1244

    Google Scholar 

  6. http://www.disco.co.jp/eg/solution/library/taiko.html

  7. http://www.aml.co.uk/files/7813/9046/8486/AML_Temp_Bond_Press_Release_V3_mod_RS_1412014.pdf

  8. http://www.protec-carrier.com/

  9. Tung CH, short course, 2013 I.E. VLSI

    Google Scholar 

  10. http://www.disco.co.jp/

  11. Civale Y, Sabuncuoglu Tezcan D, Philipsen HGG, Jaenen P, Agarwal R, Duval F, Soussan P, Travaly Y, Beyne E (2009) IEEE international conference on 3D system integration, pp 1–4

    Google Scholar 

  12. Liu JH et al (2007) Grinding wheels for manufacturing of silicon wafers: a literature review. Int J Machine Tools Manuf 47:1–13

    Article  Google Scholar 

  13. Pei ZJ, Strasbaugh A (2001) Fine grinding of silicon wafers. Int J Mach Tool Manuf 41(5):659–672

    Article  Google Scholar 

  14. Young HT, Liao H-T, Huang H-Y (2006) Surface integrity of silicon wafers in ultra-precision machining. Int J Adv Manuf Technol 29:372–378

    Article  Google Scholar 

  15. Pei ZJ et al (1999) Grinding induced subsurface cracks in silicon wafers. Int J Machine Tools Manuf 39:1103–1116

    Article  Google Scholar 

  16. Mizushima Y et al (2014) Impact of back-grinding-induced damage on Si wafer thinning for three-dimensional integration. Jap J Appl Phys 53:05GE04

    Article  Google Scholar 

  17. Gao S et al (2010) Study on the subsurface damage distribution of the silicon wafer ground by diamond wheel. Adv Mater Res 126–128:113–118

    Article  Google Scholar 

  18. Introduction of Chemical Mechanical Polishing (CMP) (2012) Cabot Microelectronics Corporation

    Google Scholar 

  19. Ogawa H et al (2003) Study on the mechanism of silicon chemical mechanical polishing employing in situ infrared spectroscopy. Jpn J Appl Phys 42(1):587

    Article  Google Scholar 

  20. http://www.s3-alliance.com/semiconductor_mems/parts_and_consumables/cmp-polishing-pads

  21. http://www.dowelectronicmaterials.com/products/semiconductors/cmp/

  22. McGrath J, Davis C (2004) Polishing pad surface characterisation in chemical mechanical planarisation. J Mater Process Technol 153–154:666–673

    Article  Google Scholar 

  23. Moon Y, Chang A, Luo JF, Bevans K, Dornfeld DA (1999) Small future reproducibility, a focus on chemical mechanical polishing (CMP), University of California at Berkeley, Berkeley, CA

    Google Scholar 

  24. Iler R (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica, Wiley, New York

    Google Scholar 

  25. Estragnat E et al (2004) Experimental investigation on mechanisms of silicon chemical mechanical polishing. J Elec Mat 33(4):334

    Article  Google Scholar 

  26. Song XL et al (2008) Effects of H2O2 on electrochemical characteristics of silicon wafers during chemical mechanical polishing corrosion, passivation, and anodic films. J Electrochem Soc 155(11):C530–C533

    Article  Google Scholar 

  27. Xu J et al (2007) The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing. Trib Int 40:285–289

    Article  Google Scholar 

  28. https://www.ee.washington.edu/research/microtech/cam/PROCESSES/PDF%20FILES/WetEtching.pdf

  29. Schwartz S (1961) J Electrochem Soc

    Google Scholar 

  30. Kulkarni M et al (2000) Acid‐based etching of silicon wafers: mass‐transfer and kinetic effects. J Electrochem Soc 147(1):176–188

    Article  Google Scholar 

  31. http://memslibrary.com/guest-articles/47-silicon-etching/33-anisotropic-wet-etching-of-silicon-with-alkaline-etchants.html

  32. Steinsland E et al (1995) ICSSS&A

    Google Scholar 

  33. Mauer L et al http://www.semi.org/eu/sites/semi.org/files/docs/Laura%20Mauer%20-%20Silicon%20Wafer%20Thin%20to%20Reveal%20Cu%20TSV.pdf

  34. Flamm DL (1989) Plasm etching, an introduction, Academic Press, New York

    Google Scholar 

  35. Agostino R et al (1981) Spectroscopic diagnostics of CF4‐O2 plasmas during Si and SiO2 etching processes. J Appl Phys 52:1259

    Article  Google Scholar 

  36. Matsuo PJ et al (1997) Role of N2 addition on CF4/O2 remote plasma chemical dry etching of polycrystalline silicon. J Vac Sci Technol A 15(4):1801

    Article  Google Scholar 

  37. Yun YB et al (2008) J Korean Phys Soc, 53(5): 2386

    Google Scholar 

  38. Ibbotson DE et al (1984) Characterization and optical properties of arrays of small gold particles. Appl Phys Lett 44(12):1130

    Article  Google Scholar 

  39. Coburn JW et al (1979) Ion‐ and electron‐assisted gas‐surface chemistry—an important effect in plasma etching. J Appl Phys 50(5):3189–3196

    Google Scholar 

  40. Ogylo EA et al (1990) J Appl Phys

    Google Scholar 

  41. Enomoto T et al (1979) Loading effect and temperature dependence of etch rate in CF4 plasma. Jpn J Appl Phys 18(1):155

    Article  Google Scholar 

  42. Tachi S et al (1988) Low‐temperature reactive ion etching and microwave plasma etching of silicon. Appl Phys Lett 52(8):616–618

    Google Scholar 

  43. Pang SW et al (1983) Damage induced in Si by ion milling or reactive ion etching. Appl Phys Lett 54:3272

    Google Scholar 

  44. Legtenberg R et al (1995) Anisotropic reactive ion etching of silicon using SF6/O2/CHF3 gas mixtures. J Electrochem Soc 142(6):2020

    Article  Google Scholar 

  45. Watanabe N et al (2014) International conference on 3D systems integration conference (3DIC)

    Google Scholar 

  46. Xu S et al (2012) Overcome challenges in Si/Cu CMP for back side TSV. ECS Trans 44(1):513–517

    Article  Google Scholar 

  47. http://www.3dincites.com/2014/06/fine-tuning-processes-tsv-reveal/

  48. Beyne E (2013) IMEC Technology Forum, Taipei

    Google Scholar 

  49. http://www.spts.com/uploaded_files/1141/images/Via-reveal-A4-2015.pdf

  50. IMEC. http://electroiq.com/insights-from-leading-edge/page/4/

  51. Tseng C-F, Liu C-S, Wu C-H, Yu D (2016) ECTC, Session 1: advances in fan-out packaging

    Google Scholar 

  52. Li L-S et al (2013) A study of low temperature and low stress electroless copper plating bath. Int J Electrochem Sci 8:5191–5202

    Google Scholar 

  53. Reverse Costing Analysis Report for Apple’s iPhone 6s Plus Fingerprint Sensor, Research and Market (2016)

    Google Scholar 

  54. Yu D (2014) IEEE IEDM 2014

    Google Scholar 

  55. https://jp.hamamatsu.com/sd/SD_MENU_Comparison_eg.html

  56. https://www.disco.co.jp/cn_t/products/catalog/pdf/laser.pdf. 2013

  57. http://www.disco.co.jp/eg/lg/index.html#2

  58. Bovatsek JM et al (2010) Proceedings of the SPIE

    Google Scholar 

  59. Courtesy: http://www.newport.com/

  60. Shi KW et al (2014) IEMTC 2014

    Google Scholar 

  61. Borkulo JV et al (2009) ECS Trans

    Google Scholar 

  62. Li J et al (2007) ECTC 2007

    Google Scholar 

  63. https://www.disco.co.jp/eg/solution/library/stealth.html

  64. http://www.photonics.com/Article.aspx?AID=31907

  65. http://www.disco.co.jp/eg/solution/library/low_k.html

  66. SD technology introduction, Disco Corporation (2015)

    Google Scholar 

  67. Brunnbauer M, Fürgut E, Beer G, Meyer T (2006) Embedded wafer level ball grid array (eWLB). In: IEEE electronics packaging technology conference 2006, pp 1–6

    Google Scholar 

  68. Yu D/TSMC, Keynote (2012) ISSM, Japan

    Google Scholar 

  69. Yu DCH (2013) Innovative wafer-based interconnect enabling system integration and semiconductor paradigm shift. In: IITC Plenary presentation, Kyoto, Japan

    Google Scholar 

  70. Yu DCH(2014) Wafer level system integration for SiP. In: 2014 I.E. international electron devices meeting, pp 27.1.1–27.1.4

    Google Scholar 

  71. Ibbotson D et al (2013) IEEE VLSI-T, pp T38–T39

    Google Scholar 

  72. Liao WS et al (2013) IEEE VLSI, pp C18–C19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug C. H. Yu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, D.C.H., Chiou, WC., Tung, C.H. (2017). Thin Die Fabrication and Applications to Wafer Level System Integration. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics