Cellular and Systems Consolidation of Declarative Memory

  • Lisa GenzelEmail author
  • John T. Wixted
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)


For memories to last consolidation has to occur, with this chapter referring to both cellular consolidation and systems consolidation. Cellular consolidation takes place in the hours after learning, stabilizing the memory trace—a process that likely involves structural changes in hippocampal neurons. Systems consolidation refers to a more protracted process by which memories eventually become independent of the hippocampus as they are established in cortical neurons. Both forms of consolidation may serve to render memories less vulnerable to forgetting. Although generally treated separately, these two forms of consolidation are presumably closely related. In this chapter, we will provide an overview of both cellular and systems consolidation and how they interact. Further, we will discuss effects of novelty, sleep and previous knowledge on consolidation.


Memory Consolidation Synaptic System Hippocampus 


  1. Axmacher N, Draguhn A, Elger C, Fell J (2009) Memory processes during sleep: beyond the standard consolidation theory. Cell Mol Life Sci 66(14):2285–2297CrossRefPubMedGoogle Scholar
  2. Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7(7):a021758CrossRefPubMedGoogle Scholar
  3. Barnes DC, Wilson DA (2014) Slow-wave sleep-imposed replay modulates both strength and precision of memory. J Neurosci 34(15):5134–5142CrossRefPubMedPubMedCentralGoogle Scholar
  4. Battaglia FP, Borensztajn G, Bod R (2012) Structured cognition and neural systems: from rats to language. Neurosci Biobehav Rev 36(7):1626–1639CrossRefPubMedGoogle Scholar
  5. Bethus I, Tse D, Morris RG (2010) Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. J Neurosci 30(5):1610–1618CrossRefPubMedGoogle Scholar
  6. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356CrossRefPubMedPubMedCentralGoogle Scholar
  7. Broadbent NJ, Clark RE (2013) Remote context fear conditioning remains hippocampus-dependent irrespective of training protocol, training-surgery interval, lesion size, and lesion method. Neurobiol Learn Mem 106:300–308CrossRefPubMedGoogle Scholar
  8. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31(3):551–570CrossRefPubMedGoogle Scholar
  9. Buzsaki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25(10):1073–1188CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coutanche MN, Thompson-Schill SL (2014) Fast mapping rapidly integrates information into existing memory networks. J Exp Psychol Gen 143(6):2296–2303CrossRefPubMedPubMedCentralGoogle Scholar
  11. Coutanche MN, Thompson-Schill SL (2015) Rapid consolidation of new knowledge in adulthood via fast mapping. Trends Cogn Sci 19(9):486–488CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M (2014) Direct reactivation of a coherent neocortical memory of context. Neuron 84(2):432–441CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dewar M, Alber J, Butler C, Cowan N, Della Sala S (2012) Brief wakeful resting boosts new memories over the long term. Psychol Sci 23(9):955–960CrossRefPubMedGoogle Scholar
  14. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126PubMedGoogle Scholar
  15. Dunsmoor JE, Murty VP, Davachi L, Phelps EA (2015) Emotional learning selectively and retroactively strengthens memories for related events. Nature 520(7547):345–348CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dupret D, O’Neill J, Pleydell-Bouverie B, Csicsvari J (2010) The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci 13(8):995–1002CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10PubMedPubMedCentralGoogle Scholar
  18. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130CrossRefPubMedGoogle Scholar
  19. Frey U, Morris RGM (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21(5):181–188CrossRefPubMedGoogle Scholar
  20. Genzel L, Robertson EM (2015) To replay, perchance to consolidate. PLoS Biol 13(10):e1002285CrossRefPubMedPubMedCentralGoogle Scholar
  21. Genzel L, Kroes MCW, Dresler M, Battaglia FP (2014) Light sleep vs. slow wave sleep in memory consolidation: a question of global vs. local processes? Trends Neurosci 37(1):10–19CrossRefPubMedGoogle Scholar
  22. Genzel L, Dresler M, Cornu M, Jager E, Konrad B, Adamczyk M, Friess E, Steiger A, Czisch M, Goya-Maldonado R (2015a) Medial prefrontal-hippocampal connectivity and motor memory consolidation in depression and schizophrenia. Biol Psychiatry 77(2):177–186CrossRefPubMedGoogle Scholar
  23. Genzel L, Rossato JI, Jacobse J, Morris RG (2015b) Differential consolidation induced by novelty and sleep associated with contrasting behavioural expression of hippocampal and cortical memory traces. SfN Poster 535:10Google Scholar
  24. Genzel L, Spoormaker VI, Konrad BN, Dresler M (2015c) The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 122:110–121CrossRefPubMedGoogle Scholar
  25. Girardeau G, Benchenane K, Wiener SI, Buzs ki G, Zugaro MB (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12(10):1222–1223CrossRefPubMedGoogle Scholar
  26. Gomperts SN, Kloosterman F, Wilson MA (2015) VTA neurons coordinate with the hippocampal reactivation of spatial experience. Elife 14(4):05360Google Scholar
  27. Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147(3):678–689CrossRefPubMedGoogle Scholar
  28. Greve A, Cooper E, Henson RN (2014) No evidence that ‘fast-mapping’ benefits novel learning in healthy older adults. Neuropsychologia 60:52–59CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jadhav S, Kemere PC, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336:1454–1458 Google Scholar
  30. Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–107CrossRefPubMedGoogle Scholar
  31. Karlsson MP, Frank LM (2009) Awake replay of remote experiences in the hippocampus. Nat Neurosci 12(7):913–918CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lesburgueres E, Gobbo OL, Alaux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science 331(6019):924–928CrossRefPubMedGoogle Scholar
  33. Lewis PA, Durrant SJ (2011) Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci 15(8):343–351CrossRefPubMedGoogle Scholar
  34. McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27(1):1–28CrossRefPubMedGoogle Scholar
  35. Mednick SC, Cai DJ, Shuman T, Anagnostaras S, Wixted JT (2011) An opportunistic theory of cellular and systems consolidation. Trends Neurosci 34(10):504–514CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moncada D, Ballarini F, Viola H (2015) Behavioral tagging: a translation of the synaptic tagging and capture hypothesis. Neural Plast 2015:650780PubMedPubMedCentralGoogle Scholar
  37. Morris RG (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. Eur J Neurosci 23(11):2829–2846CrossRefPubMedGoogle Scholar
  38. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683CrossRefPubMedGoogle Scholar
  39. Müller GE, Pilzecker A (1900) Experimentelle Beiträge zur Lehre vom Gedächtnis. Psychol Ergänzungsband (Experimental contributions to the science of memory) 1:1–300Google Scholar
  40. Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7(2):217–227CrossRefPubMedGoogle Scholar
  41. Otchy TM, Wolff SB, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SM, Olveczky BP (2015) Acute off-target effects of neural circuit manipulations. Nature 528(7582):358–363CrossRefPubMedGoogle Scholar
  42. Pennartz CM, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL (2004) The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 24(29):6446–6456CrossRefPubMedGoogle Scholar
  43. Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926CrossRefPubMedGoogle Scholar
  44. Peyrache A, Battaglia FP, Destexhe A (2011) Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc Natl Acad Sci 108(41):17207–17212CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ramanathan DS, Gulati T, Ganguly K (2015) Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLoS Biol 13(9):e1002263CrossRefPubMedPubMedCentralGoogle Scholar
  46. Redondo RL, Morris RGM (2011) Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12(1):17–30CrossRefPubMedGoogle Scholar
  47. Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020CrossRefPubMedGoogle Scholar
  48. Schendan HE, Searl MM, Melrose RJ, Stern CE (2003) An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37(6):1013–1025CrossRefPubMedGoogle Scholar
  49. Scoville W, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiat 20(11):11–23CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sharon T, Moscovitch M, Gilboa A (2011) Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proc Natl Acad Sci 108(3):1146–1151CrossRefPubMedPubMedCentralGoogle Scholar
  51. Spoormaker VI, Czisch M, Maquet P, Jancke L (2011) Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies. Philos Trans A Math Phys Eng Sci 369(1952):3708–3729CrossRefPubMedGoogle Scholar
  52. Squire LR (2009) The legacy of patient H.M. for neuroscience. Neuron 61(1):6–9CrossRefPubMedPubMedCentralGoogle Scholar
  53. Squire LR, Genzel L, Wixted JT, Morris RG (2015) Memory consolidation. Cold Spring Harb Perspect Biol 7(8):a021766CrossRefPubMedGoogle Scholar
  54. Sullivan D, Mizuseki K, Sorgi A, Buzsaki G (2014) Comparison of sleep spindles and theta oscillations in the hippocampus. J Neurosci 34(2):662–674CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tambini A, Ketz N, Davachi L (2010) Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65(2):280–290CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62CrossRefPubMedGoogle Scholar
  57. Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RG (2007) Schemas and memory consolidation. Science 316(5821):76–82CrossRefPubMedGoogle Scholar
  59. Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science 333(6044):891–895CrossRefPubMedGoogle Scholar
  60. van Buuren M, Kroes MC, Wagner IC, Genzel L, Morris RG, Fernandez G (2014) Initial investigation of the effects of an experimentally learned schema on spatial associative memory in humans. J Neurosci 34(50):16662–16670CrossRefPubMedGoogle Scholar
  61. van Kesteren MT, Fernandez G, Norris DG, Hermans EJ (2010a) Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A 107(16):7550–7555CrossRefPubMedPubMedCentralGoogle Scholar
  62. van Kesteren MT, Rijpkema M, Ruiter DJ, Fernandez G (2010b) Retrieval of associative information congruent with prior knowledge is related to increased medial prefrontal activity and connectivity. J Neurosci 30(47):15888–15894CrossRefPubMedGoogle Scholar
  63. van Kesteren MT, Ruiter DJ, Fernandez G, Henson RN (2012) How schema and novelty augment memory formation. Trends Neurosci 35(4):211–219CrossRefPubMedGoogle Scholar
  64. Wagner IC, van Buuren M, Kroes MC, Gutteling TP, van der Linden M, Morris RG, Fernandez G (2015) Schematic memory components converge within angular gyrus during retrieval. Elife 4Google Scholar
  65. Wang SH, Redondo RL, Morris RG (2010) Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc Natl Acad Sci U S A 107(45):19537–19542CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679CrossRefPubMedGoogle Scholar
  67. Wixted JT, Cai DJ (2013) Memory consolidation. Oxford University Press, New YorkCrossRefGoogle Scholar
  68. Yang G, Wan Lai CS, Cicgen J, Ma L, Li W, Gan WB (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344(6188):1174–1178CrossRefGoogle Scholar
  69. Zola-Morgan S, Squire LR, Ramus SJ (1994) Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system. Hippocampus 4(4):483–495CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.CCNSUniversity of EdinburghEdinburghUK
  2. 2.Donders InstituteNijmegenThe Netherlands
  3. 3.Department of PsychologyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations