Advertisement

Cognitive Neuroscience and Algebra: Challenging Some Traditional Beliefs

  • Carolyn KieranEmail author
Chapter

Abstract

Recent studies using neuroimaging technology with tasks touching on various areas of mathematics are raising a great deal of excitement with their findings. This chapter presents some key work related to higher level mathematical reasoning and a few insights arising from these studies with respect to our current understanding of algebra learning. After a general introduction on cognitive neuroscience and its recent advances relevant to mathematics education, the chapter focuses on two studies in particular, one on the algebraic solving method and the other on representing functions. The chapter concludes with a discussion of the ways in which these results from the newly emerging field, which is at times referred to as mathematics educational neuroscience, offer the potential of casting a quite different light on how we think about students’ processing of algebra-related material.

Keywords

Cognitive neuroscience Algebra Functions Symbolic method Model method Excelling in algebra 

References

  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  2. Blanton, M., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2015). A learning trajectory in six-year-olds’ thinking about generalizing functional relationships. Journal for Research in Mathematics Education, 46, 511–558.CrossRefGoogle Scholar
  3. Blanton, M., Stephens, A., Knuth, E., Gardiner, A. M., Isler, I., & Kim, J.-S. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46, 39–87.CrossRefGoogle Scholar
  4. Bloedy-Vinner, H. (1994). The analgebraic mode of thinking: The case of parameter. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 88–95). Lisbon, Portugal: PME.Google Scholar
  5. Bloedy-Vinner, H. (2001). Beyond unknowns and variables—Parameters and dummy variables in high school algebra. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 177–189). Dordrecht, The Netherlands: Kluwer.Google Scholar
  6. Bruer, J. T. (1997). Education and the brain: A bridge too far. Educational Researcher, 26(8), 4–16.CrossRefGoogle Scholar
  7. Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, S. F., & Schmittau, J. (2005). The development of students’ algebraic thinking in earlier grades: A cross-cultural comparative perspective. Zentralblatt für Didaktik der Mathematik, 37, 5–15.CrossRefGoogle Scholar
  8. Campbell, S. R. (2010). Embodied minds and dancing brains: New opportunities for research in mathematics education. In B. Sriraman & L. English (Eds.), Theories of mathematics education (pp. 309–331). Berlin: Springer. doi: 10.1007/978-3-642-00742-2_31.CrossRefGoogle Scholar
  9. De Smedt, B., Ansari, D., Grabner, R. H., Hannula-Sormunen, M., Schneider, M., & Verschaffel, L. (2011). Cognitive neuroscience meets mathematics education: It takes two to tango. Educational Research Review, 6, 232–237.CrossRefGoogle Scholar
  10. De Smedt, B., & Verschaffel, L. (2010). Traveling down the road: From cognitive neuroscience to mathematics education … and back. ZDM: The International Journal on Mathematics Education, 42, 649–654. doi: 10.1007/s11858-010-0282-5.CrossRefGoogle Scholar
  11. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506.CrossRefGoogle Scholar
  12. Dresler, T., Obersteiner, A., Schecklmann, M., Vogel, A. C. M., Ehlis, A.-C., Richter, M. M., et al. (2009). Arithmetic tasks in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): A study involving primary and secondary school children. Journal of Neural Transmission, 12(16), 1689–1700.CrossRefGoogle Scholar
  13. Fischer, K. W. (2009). Mind, brain, and education: Building a scientific groundwork for learning and teaching. Mind, Brain and Education, 3(1), 3–16. doi: 10.1111/j.1751-228X.2008.01048.x.CrossRefGoogle Scholar
  14. Hernandez-García, L., Wager, T., & Jonides, J. (2002). Functional brain imaging. In H. Pashler & J. Wixted (Eds.), Stevens’ handbook of experimental psychology (Methodology in experimental psychology 3rd ed., Vol. 4, pp. 175–221). New York: Wiley. http://onlinelibrary.wiley.com/doi/10.1002/0471214426.pas0405/full.Google Scholar
  15. Hoch, M., & Dreyfus, T. (2004). Structure sense in high school algebra: The effects of brackets. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 49–56). Bergen, Norway: PME.Google Scholar
  16. Khng, K. H., & Lee, K. (2009). Inhibiting interference from prior knowledge: Arithmetic intrusions in algebra word problem solving. Learning and Individual Differences, 19, 262–268.CrossRefGoogle Scholar
  17. Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). New York: Macmillan.Google Scholar
  18. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Charlotte, NC: Information Age.Google Scholar
  19. Koedinger, K. R., & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. Journal of the Learning Sciences, 13, 129–164.CrossRefGoogle Scholar
  20. Lagrange, J.-B. (2000). L’intégration d’instruments informatiques dans l’enseignement : une approche par les techniques [The integration of computer tools into teaching: An approach according to techniques]. Educational Studies in Mathematics, 43, 1–30.CrossRefGoogle Scholar
  21. Lee, K., Lim, Z. Y., Yeong, S. H. M., Ng, S. F., Venkatraman, V., & Chee, M. W. L. (2007). Strategic differences in algebraic problem solving: Neuroanatomical correlates. Brain Research, 1155, 163–171.CrossRefGoogle Scholar
  22. Lee, K., Yeong, S. H. M., Ng, S. F., Venkatraman, V., Graham, S., & Chee, M. W. L. (2010). Computing solutions to algebraic problems using a symbolic versus a schematic strategy. ZDM: The International Journal on Mathematics Education, 42, 591–605. doi: 10.1007/s11858-010-0265-6.CrossRefGoogle Scholar
  23. Leikin, R., Waisman, I., Shaul, S., & Leikin, M. (2012). An ERP study with gifted and excelling male adolescents: Solving short insight-based problems. In T. Y. Tso (Ed.), Proceedings of the 36th International Conference for the Psychology of Mathematics Education (Vol. 3, pp. 83–90). Taiwan, Taipei: PME.Google Scholar
  24. Luna, B., Garver, K. E., Urban, T. A., Lazar, N. A., & Sweeney, J. A. (2004). Maturation of cognitive processes from late childhood to adulthood. Child Development, 75, 1357–1372.CrossRefGoogle Scholar
  25. Menon, V. (2010). Developmental cognitive neuroscience of arithmetic: Implications for learning and education. ZDM Mathematics Education, 42, 515–525. doi: 10.1007/s11858-010-0242-0.CrossRefGoogle Scholar
  26. Nathan, M. J., & Koedinger, K. R. (2000). Teachers’ and researchers’ beliefs about the development of algebraic reasoning. Journal for Research in Mathematics Education, 31, 168–190.CrossRefGoogle Scholar
  27. Nathan, M. J., & Petrosino, A. (2003). Expert blind spot among preservice teachers. American Educational Research Journal, 40, 905–928.CrossRefGoogle Scholar
  28. Newman, S. D., Willoughby, G., & Pruce, B. (2011). The effect of problem structure on problem-solving: An fMRI study of word versus number problems. Brain Research, 1410, 77–88.CrossRefGoogle Scholar
  29. Ng, S. F. (2004). Developing algebraic thinking in early grades: Case study of the Singapore primary mathematics curriculum. The Mathematics Educator, 8(1), 39–59.Google Scholar
  30. Obersteiner, A., Dresler, T., Reiss, K., Vogel, A. C. M., Pekrun, R., & Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving: Chances and limitations in combining educational and neuroscientific research. ZDM—The International Journal on Mathematics Education, 42, 541–554. doi: 10.1007/s11858-010-0256-7.CrossRefGoogle Scholar
  31. Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2012). Algebra in elementary school. Enseignement de l’algèbre élémentaire (Special Issue of Recherches en Didactique des Mathématiques) (pp. 107–122).Google Scholar
  32. Susac, A., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye movements reveal students’ strategies in simple equation solving. International Journal of Science and Mathematics Education, 12, 555–577.CrossRefGoogle Scholar
  33. Thomas, M. J., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM—The International Journal on Mathematics Education, 42, 607–619. doi: 10.1007/s11858-010-0272-7.CrossRefGoogle Scholar
  34. Turner, D. A. (2011). Which part of ‘two way street’ did you not understand? Redressing the balance of neuroscience and education. Educational Research Review, 6, 224–232.CrossRefGoogle Scholar
  35. Waisman, I., Leikin, M., Shaul, S., & Leikin, R. (2014). Brain activity associated with translation between graphical and symbolic representations of functions in generally gifted and excelling in mathematics adolescents. International Journal of Science and Mathematics Education, 12, 669–696.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité du Québec à MontréalMontrealCanada

Personalised recommendations