Cellular Damage

  • Caetano Padial SabinoEmail author
  • Michael Richard Hamblin


Classical pharmacology is normally concerned with defined molecular structures that can bind to specific proteins and either inhibit or enhance the protein function to achieve some biological response with therapeutic benefit. In photodynamic therapy (PDT) context, we rarely rely on such target specificity to achieve therapeutic success. Although some recent photosensitizers have been functionalized with target-specific molecules, such as antibodies, to recognize specific cells and enhance therapy specificity, ROS produced inside the cell will damage all susceptible molecules within the diffusion radius. According to the previous chapter, both hydroxyl radicals and singlet oxygen are highly reactive toward most of the abundant biological molecules contained in cells. In this chapter we discuss how such capacity of PDT to provoke multiple sites of molecular damages in the cellular context is associated with the phototoxicity produced. Also, we discuss how cellular antioxidant and xenobiotic defenses can influence on cellular tolerance against photodynamic inactivation.


Reactive Oxygen Species Singlet Oxygen Gentian Violet Photodynamic Inactivation Diffusion Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Mr. Hamblin was supported by the US NIH Grant R01AI050875.


  1. 1.
    Autor AP. Pathology of oxygen. New York: Academic; 1982. 384 p.Google Scholar
  2. 2.
    Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford, UK: Oxford Press; 2015. 944 p.CrossRefGoogle Scholar
  3. 3.
    Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol. 2002;3(5):research0025.Google Scholar
  4. 4.
    Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67:225–57.CrossRefPubMedGoogle Scholar
  5. 5.
    Landis GN, Tower J. Superoxide dismutase evolution and life span regulation. Mech Ageing Dev. 2005;126(3):365–79.CrossRefPubMedGoogle Scholar
  6. 6.
    Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337–49.CrossRefPubMedGoogle Scholar
  7. 7.
    Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta. 2005;1703(2):93–109.CrossRefPubMedGoogle Scholar
  8. 8.
    Wilkinson F, Helman WP, Ross AB. Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data. 1995;24(2):663–77.CrossRefGoogle Scholar
  9. 9.
    Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, et al. Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol. 2007;5(4):e92.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004–10.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy. 2012;8(1):1–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Shen S, Kepp O, Michaud M, Martins I, Minoux H, Metivier D, et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene. 2011;30(45):4544–56.CrossRefPubMedGoogle Scholar
  14. 14.
    Oleinick NL, Morris RL, Belichenko I. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci. 2002;1(1):1–21.CrossRefPubMedGoogle Scholar
  15. 15.
    Kessel D, Luo Y. Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B. 1998;42(2):89–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Garg AD, Krysko DV, Vandenabeele P, Agostinis P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochem Photobiol Sci. 2011;10(5):670–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8(3):207–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Fonseca C, Dranoff G. Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res. 2008;14(6):1603–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Singh H, Bishop J, Merritt J. Singlet oxygen and ribosomes: inactivation and sites of damage. J Photochem. 1984;25(2):295–307.CrossRefGoogle Scholar
  20. 20.
    Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2001;276(5):3149–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Hubmer A, Hermann A, Uberriegler K, Krammer B. Role of calcium in photodynamically induced cell damage of human fibroblasts. Photochem Photobiol. 1996;64(1):211–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett. 2013;332(2):249–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Taylor CT, McElwain JC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology. 2010;25(5):272–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Simic MG, Jovanovic SV. Antioxidation mechanisms of uric acid. J Am Chem Soc. 1989;111(15):5778–82.CrossRefGoogle Scholar
  26. 26.
    Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J. 2001;360(Pt 1):1–16.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lafleur MV, Hoorweg JJ, Joenje H, Westmijze EJ, Retel J. The ambivalent role of glutathione in the protection of DNA against singlet oxygen. Free Radic Res. 1994;21(1):9–17.CrossRefPubMedGoogle Scholar
  28. 28.
    Miller AC, Henderson BW. The influence of cellular glutathione content on cell survival following photodynamic treatment in vitro. Radiat Res. 1986;107(1):83–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang HP, Qian SY, Schafer FQ, Domann FE, Oberley LW, Buettner GR. Phospholipid hydroperoxide glutathione peroxidase protects against singlet oxygen-induced cell damage of photodynamic therapy. Free Radic Biol Med. 2001;30(8):825–35.CrossRefPubMedGoogle Scholar
  30. 30.
    Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B. Photodynamic treatment with fractionated light decreases production of reactive oxygen species and cytotoxicity in vitro via regeneration of glutathione. Photochem Photobiol. 2005;81(3):609–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Genina EA, Bashkatov AN, Sinichkin YP, Yanina IY, Tuchin VV. Optical clearing of biological tissues: prospects of application in medical diagnostics and phototherapy. J Biomed Photon Eng. 2015;1(1):22–58.CrossRefGoogle Scholar
  32. 32.
    Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR. Melanoma resistance to photodynamic therapy: new insights. Biol Chem. 2013;394(2):239–50.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mroz P, Huang YY, Szokalska A, Zhiyentayev T, Janjua S, Nifli AP, et al. Stable synthetic bacteriochlorins overcome the resistance of melanoma to photodynamic therapy. FASEB J. 2010;24(9):3160–70.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18(16):2486–515.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kishen A, Upadya M, Tegos GP, Hamblin MR. Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem Photobiol. 2010;86(6):1343–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Prates RA, Kato IT, Ribeiro MS, Tegos GP, Hamblin MR. Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother. 2011;66(7):1525–32.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tegos GP, Masago K, Aziz F, Higginbotham A, Stermitz FR, Hamblin MR. Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob Agents Chemother. 2008;52(9):3202–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feijo Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS One. 2013;8(7):e67590.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gryson O. Servier medical art France: Servier; 2016. Available from:

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Caetano Padial Sabino
    • 1
    • 2
    • 3
    Email author
  • Michael Richard Hamblin
    • 4
    • 5
    • 6
  1. 1.Department of Microbiology, Institute for Biomedical SciencesUniversity of São PauloSao PauloBrazil
  2. 2.Department of Clinical Analysis, School of Pharmaceutical SciencesUniversity of São PauloSao PauloBrazil
  3. 3.Center for Lasers and Applications, Nuclear and Energy Research Institute, National Commission for Nuclear EnergySao PauloBrazil
  4. 4.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  5. 5.Department of DermatologyHarvard Medical SchoolBostonUSA
  6. 6.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations