Functional Imaging of Cone Photoreceptors

  • Lawrence C. SincichEmail author
  • Ramkumar Sabesan
  • William S. Tuten
  • Austin Roorda
  • Wolf M. Harmening
Part of the Springer Series in Vision Research book series (SSVR, volume 5)


Color pervades our visual sensory world, yet our understanding of the neural basis of color perception, starting with the retina and on through the multiple cortical areas that subserve vision, is still incomplete. The L, M, and S cone photoreceptors, being the cellular entry point for trichromatic vision in humans and primates, have been studied in a variety of ways to reveal their relative numbers, their spatial arrangement, and their anatomical connectivity. We review work in these species that has linked mapped cone mosaics directly to functional properties such as single neuron responses in the retina and color percepts arising from cone-targeted microstimulation. Technical issues that constrain access to single cone photoreceptors for functional studies are also considered.


Cone photoreceptors Waveguides Adaptive optics Absorptance imaging Microstimulation Chromatic dispersion Fixational eye motion Retinal vessels Increment threshold Color psychophysics 



We thank J. K. Bowmaker, K. S. Bruce, E. J. Chichilnisky, G. D. Field, J. D. Mollon, and B. Schmidt for generously providing materials for figures. For improving the text, we are grateful to K. S. Bruce, T. W. Kraft, M. S. Loop, and A. S. McKeown. Our work has been supported by the National Eye Institute (L.C.S., W.S.T., A.R.), the Eyesight Foundation of Alabama (L.C.S.), Fight for Sight (R.S.), the American Optometric Foundation (W.S.T.), and German Research Council grant Ha 5323/5-1 (W.M.H.). Ramkumar Sabesan holds a Career Award at the Scientific Interfaces from the Burroughs Wellcome Fund.


  1. 1.
    Thoen HH, How MJ, Chiou TH, Marshall J. A different form of color vision in mantis shrimp. Science. 2014;343(6169):411–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292(4):497–523.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams DR. Imaging single cells in the living retina. Vision Res. 2011;51(13):1379–96.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Roorda A. Adaptive optics for studying visual function: a comprehensive review. J Vis. 2011;11(7).Google Scholar
  5. 5.
    Berendschot TT, DeLint PJ, van Norren D. Fundus reflectance—historical and present ideas. Prog Retin Eye Res. 2003;22(2):171–200.PubMedCrossRefGoogle Scholar
  6. 6.
    Rodieck RW. The first steps in seeing. Sunderland, MA: Sinauer; 1998.Google Scholar
  7. 7.
    Packer OS, Williams DR, Bensinger DG. Photopigment transmittance imaging of the primate photoreceptor mosaic. J Neurosci. 1996;16(7):2251–60.PubMedGoogle Scholar
  8. 8.
    Enoch JM, Tobey FL. Vertebrate photoreceptor optics. Berlin: Springer; 1981.CrossRefGoogle Scholar
  9. 9.
    Marcos S, Burns SA. Cone spacing and waveguide properties from cone directionality measurements. J Opt Soc Am A Opt Image Sci Vis. 1999;16(5):995–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Vohnsen B, Iglesias I, Artal P. Guided light and diffraction model of human-eye photoreceptors. J Opt Soc Am A Opt Image Sci Vis. 2005;22(11):2318–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Lakshminarayanan V, Enoch JM. Biological waveguides. In: Bass M, Enoch JM, Lakshminarayanan V, editors. Handbook of optics. New York: McGraw-Hill; 2010.Google Scholar
  12. 12.
    Vohnsen B. Directional sensitivity of the retina: a layered scattering model of outer-segment photoreceptor pigments. Biomed Opt Express. 2014;5(5):1569–87.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Stiles CW, Crawford BH. The luminous efficiency of rays entering the eye pupil at different points. Proc R Soc Lond B Biol Sci. 1933;112:428–50.CrossRefGoogle Scholar
  14. 14.
    Applegate RA, Lakshminarayanan V. Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality. J Opt Soc Am A. 1993;10(7):1611–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen B, Makous W. Light capture by human cones. J Physiol. 1989;414:89–109.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    MacLeod DI, Williams DR, Makous W. A visual nonlinearity fed by single cones. Vision Res. 1992;32(2):347–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Chen B, Makous W, Williams DR. Serial spatial filters in vision. Vision Res. 1993;33(3):413–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Gao W, Cense B, Zhang Y, Jonnal RS, Miller DT. Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography. Opt Express. 2008;16(9):6486–501.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jonnal RS, Besecker JR, Derby JC, Kocaoglu OP, Cense B, Gao W, Wang Q, Miller DT. Imaging outer segment renewal in living human cone photoreceptors. Opt Express. 2010;18(5):5257–70.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jonnal RS, Kocaoglu OP, Zawadzki RJ, Lee SH, Werner JS, Miller DT. The cellular origins of the outer retinal bands in optical coherence tomography images. Invest Ophthalmol Vis Sci. 2014;55(12):7904–18.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Miller DT, Williams DR, Morris GM, Liang J. Images of cone photoreceptors in the living human eye. Vision Res. 1996;36(8):1067–79.PubMedCrossRefGoogle Scholar
  22. 22.
    Wade A, Fitzke F. In vivo imaging of the human cone-photoreceptor mosaic using a confocal laser scanning ophthalmoscope. Lasers Light Ophthal. 1998;8(3):129–36.Google Scholar
  23. 23.
    Vohnsen B, Iglesias I, Artal P. Directional imaging of the retinal cone mosaic. Opt Lett. 2004;29(9):968–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Pircher M, Baumann B, Gotzinger E, Hitzenberger CK. Retinal cone mosaic imaged with transverse scanning optical coherence tomography. Opt Lett. 2006;31(12):1821–3.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Porter J, Queener H, Lin J, Thorn K, Awwal A. Adaptive optics for vision science. Hoboken, NH: Wiley-Interscience; 2006.CrossRefGoogle Scholar
  26. 26.
    Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14(11):2884–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Roorda A, Romero-Borja F, Donnelly 3rd WJ, Queener H, Hebert T, Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002;10(9):405–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Rushton WA. Pigments and signals in colour vision. J Physiol. 1972;220(3):1P-PGoogle Scholar
  29. 29.
    Marks WB, Dobelle WH, Macnichol Jr EF. Visual pigments of single primate cones. Science. 1964;143(3611):1181–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Baylor DA, Nunn BJ, Schnapf JL. Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol. 1987;390:145–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schnapf JL, Kraft TW, Nunn BJ, Baylor DA. Spectral sensitivity of primate photoreceptors. Vis Neurosci. 1988;1(3):255–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. Nature. 1987;325(6103):439–41.PubMedCrossRefGoogle Scholar
  33. 33.
    Dartnall HJ, Bowmaker JK, Mollon JD. Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc R Soc Lond B Biol Sci. 1983;220(1218):115–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Stockman A, Sharpe LT, Merbs S, Nathans J. Spectral sensitivities of human cone visual pigments determined in vivo and in vitro. Methods Enzymol. 2000;316:626–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Bowmaker JK, Dartnall HJ. Visual pigments of rods and cones in a human retina. J Physiol. 1980;298:501–11.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nork TM, McCormick SA, Chao GM, Odom JV. Distribution of carbonic anhydrase among human photoreceptors. Invest Ophthalmol Vis Sci. 1990;31(8):1451–8.PubMedGoogle Scholar
  37. 37.
    Stockman A, Sharpe LT. The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 2000;40(13):1711–37.PubMedCrossRefGoogle Scholar
  38. 38.
    Bowmaker JK, Dartnall HJ, Mollon JD. Microspectrophotometric demonstration of four classes of photoreceptor in an old world primate, Macaca fascicularis. J Physiol. 1980;298:131–43.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Marc RE, Sperling HG. Chromatic organization of primate cones. Science. 1977;196(4288):454–6.PubMedCrossRefGoogle Scholar
  40. 40.
    de Monasterio FM, McCrane EP, Newlander JK, Schein SJ. Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Invest Ophthalmol Vis Sci. 1985;26(3):289–302.PubMedGoogle Scholar
  41. 41.
    Wikler KC, Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci. 1990;10(10):3390–401.PubMedGoogle Scholar
  42. 42.
    Curcio CA, Allen KA, Sloan KR, Lerea CL, Hurley JB, Klock IB, Milam AH. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol. 1991;312(4):610–24.PubMedCrossRefGoogle Scholar
  43. 43.
    Lennie P, Movshon JA. Coding of color and form in the geniculostriate visual pathway. J Opt Soc Am A Opt Image Sci Vis. 2005;22(10):2013–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Kolb H, Dekorver L. Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J Comp Neurol. 1991;303(4):617–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Dacey DM. The mosaic of midget ganglion cells in the human retina. J Neurosci. 1993;13(12):5334–55.PubMedGoogle Scholar
  46. 46.
    Wassle H, Grunert U, Martin PR, Boycott BB. Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Res. 1994;34(5):561–79.PubMedCrossRefGoogle Scholar
  47. 47.
    Wassle H, Grunert U, Rohrenbeck J, Boycott BB. Cortical magnification factor and the ganglion cell density of the primate retina. Nature. 1989;341(6243):643–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Calkins DJ, Sterling P. Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature. 1996;381(6583):613–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science. 1996;271(5249):656–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Jusuf PR, Martin PR, Grunert U. Synaptic connectivity in the midget-parvocellular pathway of primate central retina. J Comp Neurol. 2006;494(2):260–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Smith VC, Lee BB, Pokorny J, Martin PR, Valberg A. Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. J Physiol. 1992;458:191–221.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Lee BB, Kremers J, Yeh T. Receptive fields of primate retinal ganglion cells studied with a novel technique. Vis Neurosci. 1998;15(1):161–75.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin PR, Lee BB, White AJ, Solomon SG, Ruttiger L. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature. 2001;410(6831):933–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Reid RC, Shapley RM. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. J Neurosci. 2002;22(14):6158–75.PubMedGoogle Scholar
  55. 55.
    De Monasterio FM, Gouras P. Functional properties of ganglion cells of the rhesus monkey retina. J Physiol. 1975;251(1):167–95.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lankheet MJ, Lennie P, Krauskopf J. Distinctive characteristics of subclasses of red-green P-cells in LGN of macaque. Vis Neurosci. 1998;15(1):37–46.PubMedGoogle Scholar
  57. 57.
    Diller L, Packer OS, Verweij J, McMahon MJ, Williams DR, Dacey DM. L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. J Neurosci. 2004;24(5):1079–88.PubMedCrossRefGoogle Scholar
  58. 58.
    Buzas P, Blessing EM, Szmajda BA, Martin PR. Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias. J Neurosci. 2006;26(43):11148–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Silveira LC, Perry VH. The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience. 1991;40(1):217–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Grunert U, Greferath U, Boycott BB, Wassle H. Parasol (P alpha) ganglion-cells of the primate fovea: immunocytochemical staining with antibodies against GABAA-receptors. Vision Res. 1993;33(1):1–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Roorda A, Williams DR. The arrangement of the three cone classes in the living human eye. Nature. 1999;397(6719):520–2.PubMedCrossRefGoogle Scholar
  62. 62.
    Roorda A, Metha AB, Lennie P, Williams DR. Packing arrangement of the three cone classes in primate retina. Vision Res. 2001;41(10-11):1291–306.PubMedCrossRefGoogle Scholar
  63. 63.
    Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. Organization of the human trichromatic cone mosaic. J Neurosci. 2005;25(42):9669–79.PubMedCrossRefGoogle Scholar
  64. 64.
    Neitz M, Balding SD, McMahon C, Sjoberg SA, Neitz J. Topography of long- and middle-wavelength sensitive cone opsin gene expression in human and Old World monkey retina. Vis Neurosci. 2006;23(3-4):379–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Cicerone CM, Nerger JL. The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vision Res. 1989;29(1):115–28.PubMedCrossRefGoogle Scholar
  66. 66.
    Vimal RL, Pokorny J, Smith VC, Shevell SK. Foveal cone thresholds. Vision Res. 1989;29(1):61–78.PubMedCrossRefGoogle Scholar
  67. 67.
    Wesner MF, Pokorny J, Shevell SK, Smith VC. Foveal cone detection statistics in color-normals and dichromats. Vision Res. 1991;31(6):1021–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Krauskopf J. Color appearance of small stimuli and the spatial distribution of color receptors. J Opt Soc Am. 1964;54:1171.CrossRefGoogle Scholar
  69. 69.
    Krauskopf J, Srebro R. Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold. Science. 1965;150(3702):1477–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Hofer H, Singer B, Williams DR. Different sensations from cones with the same photopigment. J Vis. 2005;5(5):444–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Koenig DE, Hofer HJ. Do color appearance judgments interfere with detection of small threshold stimuli? J Opt Soc Am A Opt Image Sci Vis. 2012;29(2):A258–67.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gowdy PD, Cicerone CM. The spatial arrangement of the L and M cones in the central fovea of the living human eye. Vision Res. 1998;38(17):2575–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Brainard DH, Williams DR, Hofer H. Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. J Vis. 2008;8(5):15, 1–23.Google Scholar
  74. 74.
    Lennie P, Haake PW, Williams DR. The design of chromatically opponent receptive fields. In: Landy MS, Movshon JA, editors. Computational modeling of visual processing. Cambridge, MA: MIT Press; 1991. p. 71–82.Google Scholar
  75. 75.
    Forte JD, Blessing EM, Buzas P, Martin PR. Contribution of chromatic aberrations to color signals in the primate visual system. J Vis. 2006;6(2):97–105.PubMedCrossRefGoogle Scholar
  76. 76.
    Hofer H, Williams DR. Color vision and the retinal mosaic. In: Werner JS, Chalupa LM, editors. The new visual neurosciences. Cambridge, MA: MIT Press; 2014. p. 469–83.Google Scholar
  77. 77.
    Jacobs GH, Neitz J, Krogh K. Electroretinogram flicker photometry and its applications. J Opt Soc Am A Opt Image Sci Vis. 1996;13(3):641–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Brainard DH, Roorda A, Yamauchi Y, Calderone JB, Metha A, Neitz M, Neitz J, Williams DR, Jacobs GH. Functional consequences of the relative numbers of L and M cones. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):607–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Carroll J, McMahon C, Neitz M, Neitz J. Flicker-photometric electroretinogram estimates of L:M cone photoreceptor ratio in men with photopigment spectra derived from genetics. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):499–509.PubMedCrossRefGoogle Scholar
  80. 80.
    Carroll J, Neitz J, Neitz M. Estimates of L:M cone ratio from ERG flicker photometry and genetics. J Vis. 2002;2(8):531–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Kremers J, Stepien MW, Scholl HP, Saito C. Cone selective adaptation influences L- and M-cone driven signals in electroretinography and psychophysics. J Vis. 2003;3(2):146–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Euler T, Haverkamp S, Schubert T, Baden T. Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci. 2014;15(8):507–19.PubMedCrossRefGoogle Scholar
  83. 83.
    Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res. 2012;31(5):407–41.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lee BB, Martin PR, Grunert U. Retinal connectivity and primate vision. Prog Retin Eye Res. 2010;29(6):622–39.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Chichilnisky EJ, Baylor DA. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat Neurosci. 1999;2(10):889–93.PubMedCrossRefGoogle Scholar
  86. 86.
    Field GD, Gauthier JL, Sher A, Greschner M, Machado TA, Jepson LH, Shlens J, Gunning DE, Mathieson K, Dabrowski W, Paninski L, Litke AM, Chichilnisky EJ. Functional connectivity in the retina at the resolution of photoreceptors. Nature. 2010;467(7316):673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Li PH, Field GD, Greschner M, Ahn D, Gunning DE, Mathieson K, Sher A, Litke AM, Chichilnisky EJ. Retinal representation of the elementary visual signal. Neuron. 2014;81(1):130–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Dacey DM, Crook JD, Packer OS. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis Neurosci. 2014;31(2):139–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Rolfs M. Microsaccades: small steps on a long way. Vision Res. 2009;49(20):2415–41.PubMedCrossRefGoogle Scholar
  90. 90.
    Schnapf JL, Nunn BJ, Meister M, Baylor DA. Visual transduction in cones of the monkey Macaca fascicularis. J Physiol. 1990;427:681–713.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cao LH, Luo DG, Yau KW. Light responses of primate and other mammalian cones. Proc Natl Acad Sci U S A. 2014;111(7):2752–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Linsenmeier RA, Hertz BG. Eye movements in paralyzed cats induced by drugs and sympathetic stimulation. Vision Res. 1979;19(11):1249–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Forte J, Peirce JW, Kraft JM, Krauskopf J, Lennie P. Residual eye-movements in macaque and their effects on visual responses of neurons. Vis Neurosci. 2002;19(1):31–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Sincich LC, Zhang Y, Tiruveedhula P, Horton JC, Roorda A. Resolving single cone inputs to visual receptive fields. Nat Neurosci. 2009;12(8):967–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hofer H, Artal P, Singer B, Aragon JL, Williams DR. Dynamics of the eye’s wave aberration. J Opt Soc Am A Opt Image Sci Vis. 2001;18(3):497–506.PubMedCrossRefGoogle Scholar
  96. 96.
    Dubra A, Sulai Y, Norris JL, Cooper RF, Dubis AM, Williams DR, Carroll J. Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope. Biomed Opt Express. 2011;2(7):1864–76.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Thibos LN, Bradley A, Still DL, Zhang X, Howarth PA. Theory and measurement of ocular chromatic aberration. Vision Res. 1990;30(1):33–49.PubMedCrossRefGoogle Scholar
  98. 98.
    Atchison DA, Smith G. Chromatic dispersions of the ocular media of human eyes. J Opt Soc Am A Opt Image Sci Vis. 2005;22(1):29–37.PubMedCrossRefGoogle Scholar
  99. 99.
    Simonet P, Campbell MC. The optical transverse chromatic aberration on the fovea of the human eye. Vision Res. 1990;30(2):187–206.PubMedCrossRefGoogle Scholar
  100. 100.
    Rynders M, Lidkea B, Chisholm W, Thibos LN. Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes. J Opt Soc Am A Opt Image Sci Vis. 1995;12(10):2348–57.PubMedCrossRefGoogle Scholar
  101. 101.
    Marcos S, Burns SA, Prieto PM, Navarro R, Baraibar B. Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes. Vision Res. 2001;41(28):3861–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Harmening WM, Tiruveedhula P, Roorda A, Sincich LC. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed Opt Express. 2012;3(9):2066–77.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Westheimer G, McKee SP. Spatial configurations for visual hyperacuity. Vision Res. 1977;17(8):941–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Marcos S, Burns SA, Moreno-Barriusop E, Navarro R. A new approach to the study of ocular chromatic aberrations. Vision Res. 1999;39(26):4309–23.PubMedCrossRefGoogle Scholar
  105. 105.
    Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12(4):1169–93.PubMedGoogle Scholar
  106. 106.
    Schiefer U, Benda N, Dietrich TJ, Selig B, Hofmann C, Schiller J. Angioscotoma detection with fundus-oriented perimetry. A study with dark and bright stimuli of different sizes. Vision Res. 1999;39(10):1897–909.PubMedCrossRefGoogle Scholar
  107. 107.
    Remky A, Beausencourt E, Elsner AE. Angioscotometry with the scanning laser ophthalmoscope. Comparison of the effect of different wavelengths. Invest Ophthalmol Vis Sci. 1996;37(11):2350–5.PubMedGoogle Scholar
  108. 108.
    Adams DL, Horton JC. Shadows cast by retinal blood vessels mapped in primary visual cortex. Science. 2002;298(5593):572–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Adams DL, Horton JC. A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. J Neurosci. 2003;23(9):3771–89.PubMedGoogle Scholar
  110. 110.
    Tuten WS, Tiruveedhula P, Roorda A. Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom Vis Sci. 2012;89(5):563–74.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Nishiwaki H, Ogura Y, Kimura H, Kiryu J, Miyamoto K, Matsuda N. Visualization and quantitative analysis of leukocyte dynamics in retinal microcirculation of rats. Invest Ophthalmol Vis Sci. 1996;37(7):1341–7.PubMedGoogle Scholar
  112. 112.
    Tam J, Tiruveedhula P, Roorda A. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express. 2011;2(4):781–93.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Uji A, Hangai M, Ooto S, Takayama K, Arakawa N, Imamura H, Nozato K, Yoshimura N. The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2012;53(1):171–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Sinclair SH, Azar-Cavanagh M, Soper KA, Tuma RF, Mayrovitz HN. Investigation of the source of the blue field entoptic phenomenon. Invest Ophthalmol Vis Sci. 1989;30(4):668–73.PubMedGoogle Scholar
  115. 115.
    Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology. 2005;112(12):2219–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Martin JA, Roorda A. Pulsatility of parafoveal capillary leukocytes. Exp Eye Res. 2009;88(3):356–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci. 2010;51(3):1691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Arathorn DW, Yang Q, Vogel CR, Zhang Y, Tiruveedhula P, Roorda A. Retinally stabilized cone-targeted stimulus delivery. Opt Express. 2007;15(21):13731–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Yang Q, Arathorn DW, Tiruveedhula P, Vogel CR, Roorda A. Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery. Opt Express. 2010;18(17):17841–58.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Harmening WM, Tuten WS, Roorda A, Sincich LC. Mapping the perceptual grain of the human retina. J Neurosci. 2014;34(16):5667–77.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wilson ME. Invariant features of spatial summation with changing locus in the visual field. J Physiol. 1970;207(3):611–22.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lie I. Visual detection and resolution as a function of retinal locus. Vision Res. 1980;20(11):967–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Anderson SJ, Mullen KT, Hess RF. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J Physiol. 1991;442:47–64.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Volbrecht VJ, Shrago EE, Schefrin BE, Werner JS. Spatial summation in human cone mechanisms from 0 degrees to 20 degrees in the superior retina. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Drasdo N, Millican CL, Katholi CR, Curcio CA. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 2007;47(22):2901–11.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nerger JL, Cicerone CM. The ratio of L cones to M cones in the human parafoveal retina. Vision Res. 1992;32(5):879–88.PubMedCrossRefGoogle Scholar
  127. 127.
    Otake S, Cicerone CM. L and M cone relative numerosity and red-green opponency from fovea to midperiphery in the human retina. J Opt Soc Am A Opt Image Sci Vis. 2000;17(3):615–27.PubMedCrossRefGoogle Scholar
  128. 128.
    Williams DR, MacLeod DI, Hayhoe MM. Punctate sensitivity of the blue-sensitive mechanism. Vision Res. 1981;21(9):1357–75.PubMedCrossRefGoogle Scholar
  129. 129.
    Makous W, Carroll J, Wolfing JI, Lin J, Christie N, Williams DR. Retinal microscotomas revealed with adaptive-optics microflashes. Invest Ophthalmol Vis Sci. 2006;47(9):4160–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Yeh T, Smith VC, Pokorny J. The effect of background luminance on cone sensitivity functions. Invest Ophthalmol Vis Sci. 1989;30(10):2077–86.PubMedGoogle Scholar
  131. 131.
    Cole GR, Hine T. Computation of cone contrasts for color vision research. Behav Res Meth Instrum Comput. 1992;24:22–7.CrossRefGoogle Scholar
  132. 132.
    DeVries SH, Qi X, Smith R, Makous W, Sterling P. Electrical coupling between mammalian cones. Curr Biol. 2002;12(22):1900–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Hornstein EP, Verweij J, Schnapf JL. Electrical coupling between red and green cones in primate retina. Nat Neurosci. 2004;7(7):745–50.PubMedCrossRefGoogle Scholar
  134. 134.
    Tuten WS, Harmening WM, Sabesan R, Sincich LC, Roorda A. Functional mapping of the trichromatic cone mosaic in vivo. In: Fall vision meeting abstracts. Philadelphia: Optical Society of America; 2014.Google Scholar
  135. 135.
    Sabesan R, Tuten WS, Roorda A. Mapping the human trichromatic cone mosaic with an AOSLO. In: ARVO. 2014.Google Scholar
  136. 136.
    Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol Bull. 1968;70(4):213–20.PubMedCrossRefGoogle Scholar
  137. 137.
    van den Berg TJ, Franssen L, Kruijt B, Coppens JE. History of ocular straylight measurement: a review. Z Med Phys. 2013;23(1):6–20.PubMedCrossRefGoogle Scholar
  138. 138.
    Mollon JD, Bowmaker JK. The spatial arrangement of cones in the primate fovea. Nature. 1992;360(6405):677–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Bruce KS, Harmening WM, Langston BR, Tuten WS, Roorda A, Sincich LC. Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci. 2015;56(8):4431–8.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Bruce KS, Harmening WM, Roorda A, Sincich LS. Cone-by-cone threshold variability in the human retina. In: Society for neuroscience conference. Washington, DC; 2014.Google Scholar
  141. 141.
    Sabesan R. Studying cone-by-cone contributions to color vision. In: Fall vision meeting. J Vis. 2014:17.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lawrence C. Sincich
    • 1
    Email author
  • Ramkumar Sabesan
    • 2
  • William S. Tuten
    • 2
  • Austin Roorda
    • 2
  • Wolf M. Harmening
    • 3
  1. 1.Department of Optometry and Vision ScienceUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.School of OptometryUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of OphthalmologyUniversity of BonnBonnGermany

Personalised recommendations