Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9892)

Abstract

We present a formal analysis of the impact of Boolean satisfiability (SAT) based preprocessing techniques on core-guided solvers for the constraint optimization paradigm of maximum satisfiability (MaxSAT). We analyze the behavior of two solver abstractions of the core-guided approaches. We show that SAT-based preprocessing has no effect on the best-case number of iterations required by the solvers. This implies that, with respect to best-case performance, the potential benefits of applying SAT-based preprocessing in conjunction with core-guided MaxSAT solvers are in principle solely a result of speeding up the individual SAT solver calls made during MaxSAT search. We also show that, in contrast to best-case performance, SAT-based preprocessing can improve the worst-case performance of core-guided approaches to MaxSAT.

References

  1. 1.
    Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Proceedings of the AAAI, pp. 682–687. AAAI Press/The MIT Press (2002)Google Scholar
  2. 2.
    Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.P.: Spatial and temporal design debug using partial MaxSAT. In: Proceedings of the 19th ACM Great Lakes Symposium on VLSI, pp. 345–350. ACM (2009)Google Scholar
  3. 3.
    Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated design debugging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1804–1817 (2010)CrossRefGoogle Scholar
  4. 4.
    Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J.P., Rapicault, P.: Solving linux upgradeability problems using boolean optimization. In: Proceedings of the LoCoCo, EPTCS, vol. 29, pp. 11–22 (2010)Google Scholar
  5. 5.
    Lynce, I., Marques-Silva, J.: Restoring CSP satisfiability with MaxSAT. Fundam. Inform. 107(2–3), 249–266 (2011)MathSciNetMATHGoogle Scholar
  6. 6.
    Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satisfiability and backbones. In: Proceedings of the FMCAD, pp. 63–66. FMCAD Inc. (2011)Google Scholar
  7. 7.
    Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Proceedings of the PLDI, pp. 437–446. ACM (2011)Google Scholar
  8. 8.
    Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 941–956. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proceedings of the AAAI. AAAI Press (2012)Google Scholar
  11. 11.
    Ansótegui, C., Izquierdo, I., Manyà, F., Torres-Jiménez, J.: A Max-SAT-based approach to constructing optimal covering arrays. In: Proceedings of the CCIA, Frontiers in Artificial Intelligence and Applications, vol. 256, pp. 51–59. IOS Press (2013)Google Scholar
  12. 12.
    Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in package management systems. In: Proceedings of the ICSE, pp. 745–755. ACM (2014)Google Scholar
  13. 13.
    Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian networks via maximum satisfiability. In: Proceedings of the AISTATS, JMLR Workshop and Conference Proceedings, vol. 33, pp. 86–95 (2014). www.JMLR.org
  14. 14.
    Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using maximum satisfiability reasoning. In: Proceedings of the ECAI, Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 303–308. IOS Press (2014)Google Scholar
  15. 15.
    Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evaluation. In: Proceedings of the ICTAI, pp. 328–335. IEEE Computer Society (2014)Google Scholar
  16. 16.
    Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: Proceedings of the IJCAI, pp. 1966–1972. AAAI Press (2015)Google Scholar
  17. 17.
    Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artificial Intelligence (2015, in press)Google Scholar
  18. 18.
    Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension enforcement in abstract argumentation. In: Proceedings of the AAAI. AAAI Press (2016)Google Scholar
  19. 19.
    Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
  20. 20.
    Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the STOC, pp. 151–158. ACM (1971)Google Scholar
  23. 23.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability: Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  24. 24.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. J. Satisfiability Boolean Model. Comput. 8(1/2), 95–100 (2012)MathSciNetMATHGoogle Scholar
  25. 25.
    Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for maxsat. In: Middeldorp, A., Voronkov, A., McMillan, K. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 96–111. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular maxsat solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the AAAI, pp. 2717–2723. AAAI Press (2014)Google Scholar
  29. 29.
    Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In: Proceedings of the IJCAI, pp. 246–252. AAAI Press (2015)Google Scholar
  30. 30.
    Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based preprocessing for MaxSAT. In: Proceedings of the IJCAI, pp. 239–245. AAAI Press (2015)Google Scholar
  31. 31.
    Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Heidelberg (2014)Google Scholar
  32. 32.
    Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer, Heidelberg (2013)Google Scholar
  33. 33.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Miller, D., Sattler, U., Gramlich, B. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Lagniez, J.M., Marquis, P.: Preprocessing for propositional model counting. In: Proceedings of the AAAI, pp. 2688–2694. AAAI Press (2014)Google Scholar
  36. 36.
    Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480. Springer, Heidelberg (2009)Google Scholar
  37. 37.
    Argelich, J., Li, C.-M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 15–20. Springer, Heidelberg (2008)Google Scholar
  38. 38.
    Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Heras, F., Marques-Silva, J.: Read-once resolution for unsatisfiability-based Max-SAT algorithms. In: Proceedings of the IJCAI, pp. 572–577. AAAI Press (2011)Google Scholar
  40. 40.
    Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for maxsat preprocessing. In: Proceedings of the ICTAI, pp. 813–820. IEEE (2015)Google Scholar
  41. 41.
    Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of the AAAI. AAAI Press (2011)Google Scholar
  43. 43.
    Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progression in maximum satisfiability. In: ECAI 2014, pp. 453–458. IOS Press (2014)Google Scholar
  44. 44.
    Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle queries (2015). CoRR abs/1505.02371Google Scholar
  45. 45.
    Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)CrossRefGoogle Scholar
  47. 47.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  48. 48.
    Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 108–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)Google Scholar
  50. 50.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)Google Scholar
  51. 51.
    Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)Google Scholar
  52. 52.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)Google Scholar
  53. 53.
    Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer, Heidelberg (2014)Google Scholar
  54. 54.
    Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  55. 55.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2_34 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations