Impact of SAT-Based Preprocessing on Core-Guided MaxSAT Solving

  • Jeremias BergEmail author
  • Matti Järvisalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9892)


We present a formal analysis of the impact of Boolean satisfiability (SAT) based preprocessing techniques on core-guided solvers for the constraint optimization paradigm of maximum satisfiability (MaxSAT). We analyze the behavior of two solver abstractions of the core-guided approaches. We show that SAT-based preprocessing has no effect on the best-case number of iterations required by the solvers. This implies that, with respect to best-case performance, the potential benefits of applying SAT-based preprocessing in conjunction with core-guided MaxSAT solvers are in principle solely a result of speeding up the individual SAT solver calls made during MaxSAT search. We also show that, in contrast to best-case performance, SAT-based preprocessing can improve the worst-case performance of core-guided approaches to MaxSAT.


Cardinality Constraint Preprocessing Technique Label Variable Soft Clause Unsatisfiable Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Proceedings of the AAAI, pp. 682–687. AAAI Press/The MIT Press (2002)Google Scholar
  2. 2.
    Chen, Y., Safarpour, S., Veneris, A.G., Marques-Silva, J.P.: Spatial and temporal design debug using partial MaxSAT. In: Proceedings of the 19th ACM Great Lakes Symposium on VLSI, pp. 345–350. ACM (2009)Google Scholar
  3. 3.
    Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated design debugging with maximum satisfiability. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(11), 1804–1817 (2010)CrossRefGoogle Scholar
  4. 4.
    Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J.P., Rapicault, P.: Solving linux upgradeability problems using boolean optimization. In: Proceedings of the LoCoCo, EPTCS, vol. 29, pp. 11–22 (2010)Google Scholar
  5. 5.
    Lynce, I., Marques-Silva, J.: Restoring CSP satisfiability with MaxSAT. Fundam. Inform. 107(2–3), 249–266 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Zhu, C., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maximum satisfiability and backbones. In: Proceedings of the FMCAD, pp. 63–66. FMCAD Inc. (2011)Google Scholar
  7. 7.
    Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Proceedings of the PLDI, pp. 437–446. ACM (2011)Google Scholar
  8. 8.
    Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Guerra, J., Lynce, I.: Reasoning over biological networks using maximum satisfiability. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 941–956. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: Proceedings of the AAAI. AAAI Press (2012)Google Scholar
  11. 11.
    Ansótegui, C., Izquierdo, I., Manyà, F., Torres-Jiménez, J.: A Max-SAT-based approach to constructing optimal covering arrays. In: Proceedings of the CCIA, Frontiers in Artificial Intelligence and Applications, vol. 256, pp. 51–59. IOS Press (2013)Google Scholar
  12. 12.
    Ignatiev, A., Janota, M., Marques-Silva, J.: Towards efficient optimization in package management systems. In: Proceedings of the ICSE, pp. 745–755. ACM (2014)Google Scholar
  13. 13.
    Berg, J., Järvisalo, M., Malone, B.: Learning optimal bounded treewidth Bayesian networks via maximum satisfiability. In: Proceedings of the AISTATS, JMLR Workshop and Conference Proceedings, vol. 33, pp. 86–95 (2014).
  14. 14.
    Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using maximum satisfiability reasoning. In: Proceedings of the ECAI, Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 303–308. IOS Press (2014)Google Scholar
  15. 15.
    Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: an evaluation. In: Proceedings of the ICTAI, pp. 328–335. IEEE Computer Society (2014)Google Scholar
  16. 16.
    Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: Proceedings of the IJCAI, pp. 1966–1972. AAAI Press (2015)Google Scholar
  17. 17.
    Berg, J., Järvisalo, M.: Cost-optimal constrained correlation clustering via weighted partial maximum satisfiability. Artificial Intelligence (2015, in press)Google Scholar
  18. 18.
    Wallner, J.P., Niskanen, A., Järvisalo, M.: Complexity results and algorithms for extension enforcement in abstract argumentation. In: Proceedings of the AAAI. AAAI Press (2016)Google Scholar
  19. 19.
    Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)Google Scholar
  20. 20.
    Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the STOC, pp. 151–158. ACM (1971)Google Scholar
  23. 23.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability: Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)Google Scholar
  24. 24.
    Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: a partial Max-SAT solver. J. Satisfiability Boolean Model. Comput. 8(1/2), 95–100 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for maxsat. In: Middeldorp, A., Voronkov, A., McMillan, K. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 96–111. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular maxsat solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)Google Scholar
  28. 28.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: Proceedings of the AAAI, pp. 2717–2723. AAAI Press (2014)Google Scholar
  29. 29.
    Bjørner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In: Proceedings of the IJCAI, pp. 246–252. AAAI Press (2015)Google Scholar
  30. 30.
    Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based preprocessing for MaxSAT. In: Proceedings of the IJCAI, pp. 239–245. AAAI Press (2015)Google Scholar
  31. 31.
    Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Heidelberg (2014)Google Scholar
  32. 32.
    Ansótegui, C., Gabàs, J.: Solving (weighted) partial MaxSAT with ILP. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 403–409. Springer, Heidelberg (2013)Google Scholar
  33. 33.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Miller, D., Sattler, U., Gramlich, B. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Lagniez, J.M., Marquis, P.: Preprocessing for propositional model counting. In: Proceedings of the AAAI, pp. 2688–2694. AAAI Press (2014)Google Scholar
  36. 36.
    Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480. Springer, Heidelberg (2009)Google Scholar
  37. 37.
    Argelich, J., Li, C.-M., Manyà, F.: A preprocessor for Max-SAT solvers. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 15–20. Springer, Heidelberg (2008)Google Scholar
  38. 38.
    Bonet, M.L., Levy, J., Manyà, F.: Resolution for Max-SAT. Artif. Intell. 171(8–9), 606–618 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Heras, F., Marques-Silva, J.: Read-once resolution for unsatisfiability-based Max-SAT algorithms. In: Proceedings of the IJCAI, pp. 572–577. AAAI Press (2011)Google Scholar
  40. 40.
    Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for maxsat preprocessing. In: Proceedings of the ICTAI, pp. 813–820. IEEE (2015)Google Scholar
  41. 41.
    Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3), 490–509 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: Proceedings of the AAAI. AAAI Press (2011)Google Scholar
  43. 43.
    Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progression in maximum satisfiability. In: ECAI 2014, pp. 453–458. IOS Press (2014)Google Scholar
  44. 44.
    Kullmann, O., Marques-Silva, J.: Computing maximal autarkies with few and simple oracle queries (2015). CoRR abs/1505.02371Google Scholar
  45. 45.
    Janota, M., Marques-Silva, J.: On the query complexity of selecting minimal sets for monotone predicates. Artif. Intell. 233, 73–83 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ansótegui, C., Gabàs, J., Levy, J.: Exploiting subproblem optimization in SAT-based MaxSAT algorithms. J. Heuristics 22(1), 1–53 (2016)CrossRefGoogle Scholar
  47. 47.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  48. 48.
    Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 108–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)Google Scholar
  50. 50.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)Google Scholar
  51. 51.
    Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)Google Scholar
  52. 52.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)Google Scholar
  53. 53.
    Bacchus, F., Narodytska, N.: Cores in core based MaxSat algorithms: an analysis. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 7–15. Springer, Heidelberg (2014)Google Scholar
  54. 54.
    Davies, J., Bacchus, F.: Postponing optimization to speed up MAXSAT solving. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  55. 55.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40970-2_34 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations