On Incremental Core-Guided MaxSAT Solving

  • Xujie Si
  • Xin Zhang
  • Vasco Manquinho
  • Mikoláš Janota
  • Alexey Ignatiev
  • Mayur Naik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9892)


This paper aims to improve the efficiency of unsat core-guided MaxSAT solving on a sequence of similar problem instances. In particular, we consider the case when the sequence is constructed by adding new hard or soft clauses. Our approach is akin to the well-known idea of incremental SAT solving. However, we show that there are important differences between incremental SAT and incremental MaxSAT, where a straightforward implementation may lead to a sharp decrease in performance. We present alternatives that enable to cope with such issues. The presented algorithm is implemented and evaluated on practical problems. It solves more instances and yields an average speedup of 1.8\(\times \) on previously solvable instances.


Conjunctive Normal Form Incremental Algorithm Conjunctive Normal Form Formula Soft Clause Abstraction Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the national funds through Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013, DARPA under agreement #FA8750-15-2-0009, NSF awards #1253867 and #1526270, and a Facebook Fellowship. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright thereon.


  1. 1.
    Alviano, M., Dodaro, C., Ricca, F.: A MaxSAT algorithm using cardinality constraints of bounded size. In: IJCAI (2015)Google Scholar
  2. 2.
    Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-Based weighted MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 86–101. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfiability testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell. 196, 77–105 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable cores in MaxSAT. In: IJCAI (2015)Google Scholar
  6. 6.
    Bjorner, N., Narodytska, N.: Maximum satisfiability using cores and correction sets. In: IJCAI (2015)Google Scholar
  7. 7.
    Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A modular approach to MaxSAT modulo theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr. Notes Theor. Comput. Sci. 89(4), 543–560 (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Grigore, R., Yang, H.: Abstraction refinement guided by a learnt probabilistic model. In: POPL (2016)Google Scholar
  14. 14.
    Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maximum satisfiability. In: AAAI (2011)Google Scholar
  15. 15.
    Ignatiev, A., Morgado, A., Manquinho, V.M., Lynce, I., Marques-Silva, J.: Progression in maximum satisfiability. In: ECAI (2014)Google Scholar
  16. 16.
    Mangal, R., Zhang, X., Kamath, A., Nori, A.V., Naik, M.: Scaling relational inference using proofs and refutations. In: AAAI (2016)Google Scholar
  17. 17.
    Mangal, R., Zhang, X., Nori, A.V., Naik, M.: Volt: a lazy grounding framework for solving very large MaxSAT instances. In: Heule, M., et al. (eds.) SAT 2015. LNCS, vol. 9340, pp. 299–306. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_22 CrossRefGoogle Scholar
  18. 18.
    Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program analysis. In: FSE (2015)Google Scholar
  19. 19.
    Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Martins, R., Manquinho, V.M., Lynce, I.: On partitioning for maximum satisfiability. In: ECAI 2012 (2012)Google Scholar
  22. 22.
    Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a modular MaxSAT solver. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    MaxSAT evaluations.
  24. 24.
    Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI (2014)Google Scholar
  27. 27.
    Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)CrossRefGoogle Scholar
  28. 28.
    Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement for program analyses in Datalog. In: PLDI (2014)Google Scholar
  29. 29.
    Zhang, X., Mangal, R., Nori, A.V., Naik, M.: Query-guided maximum satisfiability. In: POPL (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xujie Si
    • 1
  • Xin Zhang
    • 1
  • Vasco Manquinho
    • 2
  • Mikoláš Janota
    • 3
  • Alexey Ignatiev
    • 4
    • 5
  • Mayur Naik
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.INESC-ID, ISTUniversidade de LisboaLisbonPortugal
  3. 3.Microsoft ResearchCambridgeUK
  4. 4.LaSIGE, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  5. 5.ISDCT SB RASIrkutskRussia

Personalised recommendations