Security Analysis of Mobile Edge Computing in Virtualized Small Cell Networks

  • Vassilios Vassilakis
  • Ioannis P. ChochliourosEmail author
  • Anastasia S. Spiliopoulou
  • Evangelos Sfakianakis
  • Maria Belesioti
  • Nikolaos Bompetsis
  • Mick Wilson
  • Charles Turyagyenda
  • Athanassios Dardamanis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 475)


Based upon the context of Mobile Edge Computing (MEC) actual research and within the innovative scope of the SESAME EU-funded research project, we propose and assess a framework for security analysis applied in virtualised Small Cell Networks, with the aim of further extending MEC in the broader 5G environment. More specifically, by applying the fundamental concepts of the SESAME original architecture that aims at providing enhanced multi-tenant MEC services through Small Cells coordination and virtualization, we focus on a realistic 5G-oriented scenario enabling the provision of large multi-tenant enterprise services by using MEC. Then we evaluate several security issues by using a formal methodology, known as the Secure Tropos.


5G Mobile Edge Computing (MEC) Network Functions Virtualization (NFV) Security Software Defined Networking (SDN) Small Cell (SC) Virtual Network Function (VNF) 



This work has been performed in the scope of the SESAME European Research Project and has been supported by the Commission of the European Communities (5G-PPP/H2020, Grant Agreement No. 671596).


  1. 1.
    Demestichas, P., Georgakopoulos, A., et al.: 5G on the horizon: key challenges for the radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)CrossRefGoogle Scholar
  2. 2.
    Andrews, J.G.: Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag. 51(3), 136–144 (2013)CrossRefGoogle Scholar
  3. 3.
    Nunes, B.A.A., Mendonça, M., Ngyen, X.-N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, and future of programmable networks. IEEE Commun. Surv. Tutorials 16(3), 1–18 (2014)CrossRefGoogle Scholar
  4. 4.
    Mosharaf, N.M., Chowdhury, K., Boutaba, R.: A survey of network virtualization. Comput. Netw. 54(5), 862–876 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Haleplidis, E., Salim, J.H., Denazis, S., et al.: Towards a network abstraction model for SDN. J. Netw. Syst. Manage. 23(2), 309–327 (2015)CrossRefGoogle Scholar
  6. 6.
    Shrivastava, R., Constanzo, S., Samdanis, K., Xenakis, D., Grace, D., Merakos, L.: An SDN-based framework for elastic resource sharing in integrated FDD/TDD LTE-A HetNets. In: Proceedings of the 3rd IEEE International Conference on Cloud Networking (CloudNet), pp. 126–131. IEEE Press, New York (2014)Google Scholar
  7. 7.
    European Telecommunications Standards Institute (ETSI): Mobile-Edge Computing, Introductory Technical White Paper. ETSI, Sophia-Antipolis (2014)Google Scholar
  8. 8.
    Vaquero, L.M., Rodero-Merino, L.: Finding your way in the fog: towards a comprehensive definition of fog computing. ACM SIGCOMM Comput. Commun. Rev. 44(5), 27–32 (2014)CrossRefGoogle Scholar
  9. 9.
    Fetweiss, G.P.: The tactile internet: applications and challenges. IEEE Veh. Technol. Mag. 9(1), 64–70 (2014)CrossRefGoogle Scholar
  10. 10.
    SESAME H2020 5G-PPP Project.
  11. 11.
    Lee, K., Kim, D., Ha, D., Rajput, U., Oh, H.: On security and privacy issues of fog computing supported internet of things environment. In: Proceedings of the 6th IEEE International Conference on the Network of the Future (NOF), pp. 1–3. IEEE (2015)Google Scholar
  12. 12.
    Stojmenovic, I., Wen, S., Huang, X., Luan, T.H.: An overview of fog computing and its security issues. Concurrency Comput. Pract. Experience 28(10), 2991–3005 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Uehara, T., Sasaki, R.: Fog computing: issues and challenges. In: Proceedings of the 39th IEEE Annual COMPSAC Conference, pp. 53–59. IEEE (2015)Google Scholar
  14. 14.
    Stolfo, S.J., Salem, M.B., Keromytis, A.D.: Fog computing: mitigating insider data theft attacks in the cloud. In: Proceedings of the IEEE Symposium on Security and Privacy Workshops (SPW), pp. 125–128. IEEE (2012)Google Scholar
  15. 15.
    Lopez, P.G., Montresor, A., Epema, D., et al.: Edge-centric computing: vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 45(5), 37–42 (2015)CrossRefGoogle Scholar
  16. 16.
    Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the tropos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(2), 285–309 (2007)CrossRefGoogle Scholar
  17. 17.
    Skorobogatov, S.: Physical attacks and tamper resistance. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust, pp. 143–173. Springer, New York (2011)Google Scholar
  18. 18.
    Buetnner, R.: Towards a new personal information technology acceptance model: conceptualization and empirical evidence from a bring your own device datataset. In: Proceedings of the 21st AMCIS. AIS, Fajardo, Puerto-Rico (2015)Google Scholar
  19. 19.
    Cloud Security Alliance (CSA). Security guidance for critical areas of focus in cloud computing v2.1. CSA (2009)Google Scholar
  20. 20.
    Mouratidis, H., Islam, S., Kalloniatis, C., Gritzalis, S.: A framework to support selection of cloud providers based on security and privacy requirements. J. Syst. Softw. 86(9), 2276–2293 (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Vassilios Vassilakis
    • 1
  • Ioannis P. Chochliouros
    • 2
    Email author
  • Anastasia S. Spiliopoulou
    • 2
  • Evangelos Sfakianakis
    • 2
  • Maria Belesioti
    • 2
  • Nikolaos Bompetsis
    • 2
  • Mick Wilson
    • 3
  • Charles Turyagyenda
    • 3
  • Athanassios Dardamanis
    • 4
  1. 1.School of Computing and EngineeringUniversity of West LondonLondonUK
  2. 2.Hellenic Telecommunications Organization (OTE) S.A.AthensGreece
  3. 3.Fujitsu Laboratories of Europe Ltd.Hayes, MiddlesexUK
  4. 4.SmartNET S.A.AtticaGreece

Personalised recommendations