Genetic Search of Pickup and Delivery Problem Solutions for Self-driving Taxi Routing

  • Viacheslav Shalamov
  • Andrey Filchenkov
  • Anatoly Shalyto
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 475)

Abstract

Self-driving cars belong to rapidly growing domain of cyber-physical systems with many open problems. In this paper, we study routing problem for taxis. In mathematical terms, it is well-known Pickup and Delivery problem (PDP). We use with the standard small-moves technique, which is to apply small changes to a solution for PDP in order to obtain a better one; and an approach that works with small-moves as mutations in genetic algorithms. We propose a strategy-based framework for managing set of small changes and suggest different strategies. We tested algorithms for routing on real-world dataset on taxi orders to airports in United Kingdom. The results show that algorithms using mixed strategies outperform algorithms using a single small move.

Keywords

Self-driving car Autonomous car Routing Pickup and delivery Genetic algorithms City taxi 

Notes

Acknowledgements

Authors would like to thank Daniil Chivilikhin for useful comments. This work was financially supported by the Government of the Russian Federation, Grant 074-U01.

References

  1. 1.
    Alur, R.: Principles of cyber-physical systems. MIT Press, Cambridge (2015)Google Scholar
  2. 2.
    Bender, P., Tas, O.S., Ziegler, J., Stiller, C.: The combinatorial aspect of motion planning: Maneuver variants in structured environments. In: Intelligent Vehicles Symposium (IV), 2015 IEEE. pp. 1386–1392. IEEE (2015)Google Scholar
  3. 3.
    Broggi, A., Bombini, L., Cattani, S., Cerri, P., Fedriga, R.: Sensing requirements for a 13,000 km intercontinental autonomous drive. In: Intelligent Vehicles Symposium (IV), 2015 IEEE, pp. 500–505. IEEE (2010)Google Scholar
  4. 4.
    Carrabs, F., Cordeau, J.F., Laporte, G.: Variable neighborhood search for the pickup and delivery traveling salesman problem with lifo loading. INFORMS J. Comput. 19(4), 618–632 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chong, Z., Qin, B., Bandyopadhyay, T., Wongpiromsarn, T., Rebsamen, B., Dai, P., Rankin, E., Ang Jr., M.H.: Autonomy for mobility on demand. In: Intelligent Autonomous Systems 12, pp. 671–682. Springer (2013)Google Scholar
  6. 6.
    Chu, K., Lee, M., Sunwoo, M.: Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Trans. Syst. 13(4), 1599–1616 (2012)CrossRefGoogle Scholar
  7. 7.
    Cordeau, J.F., Laporte, G., Ropke, S.: Recent models and algorithms for one-to-one pickup and delivery problems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces, vol. 43, pp. 327–357. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Cordeau, J., Iori, M., Laporte, G., Salazar Gonzlez, J.: A branch-and-cutalgorithm for the pickup and delivery traveling salesman problem with lifo loading. Networks 55, 46–59 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dallegro, J.A.: How google’s self-driving car will change everything (2014). http://www.investopedia.com/articles/investing/052014/how-googles-selfdriving-car-will-change-everything.asp, Accessed 15 Feb 2016
  10. 10.
    Davies, A.: Baidu’s self-driving car has hit the road (2014). http://www.wired.com/2015/12/baidus-self-driving-car-has-hit-the-road/, Accessed 15 Feb 2016
  11. 11.
    Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Rob. Res. 29(5), 485–501 (2010)CrossRefGoogle Scholar
  12. 12.
    Ercan, Z., Sezer, V., Heceoglu, H., Dikilitas, C., Gokasan, M., Mugan, A., Bogosyan, S.: Multi-sensor data fusion of dcm based orientation estimation for land vehicles. In: 2011 IEEE International Conference on Mechatronics (ICM), pp. 672–677. IEEE (2011)Google Scholar
  13. 13.
    Göhring, D., Wang, M., Schnürmacher, M., Ganjineh, T.: Radar/lidar sensor fusion for car-following on highways. In: 2011 5th International Conference on Automation, Robotics and Applications (ICARA), pp. 407–412. IEEE (2011)Google Scholar
  14. 14.
    González, D., Perez, J., Lattarulo, R., Milanés, V., Nashashibi, F.: Continuous curvature planning with obstacle avoidance capabilities in urban scenarios. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), pp. 1430–1435. IEEE (2014)Google Scholar
  15. 15.
    Hawkins, A.J.: Google vs. uber and the race to self-driving taxis (2015). http://www.theverge.com/2015/12/16/10309960/google-vs-uber-competition-self-driving-cars, Accessed 2016–02-15
  16. 16.
    Iori, M., Martello, S.: Routing problems with loading constraints. Top 18, 4–27 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Haider Jafri, S.M., Kala, R.: Path planning of a mobile robot in outdoor terrain. In: Berretti, S., Thampi, S.M., Dasgupta, S. (eds.) Intelligent Systems Technologies and Applications. ALSC, pp. 187–195. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  18. 18.
    Jo, K., Kim, J., Kim, D., Jang, C., Sunwoo, M.: Development of autonomous car—part i: distributed system architecture and development process. IEEE Trans. Ind. Electron. 61(12), 7131–7140 (2014)CrossRefGoogle Scholar
  19. 19.
    Jo, K., Sunwoo, M.: Generation of a precise roadway map for autonomous cars. IEEE Trans. Intell. Transp. Syst. 15(3), 925–937 (2014)CrossRefGoogle Scholar
  20. 20.
    Kala, R., Warwick, K.: Planning autonomous vehicles in the absence of speed lanes using an elastic strip. IEEE Trans. Intell. Transp. Syst. 14(4), 1743–1752 (2013)CrossRefGoogle Scholar
  21. 21.
    Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.R.: Parallel scheduling for cyber-physical systems: analysis and case study on a self-driving car. In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, pp. 31–40. ACM (2013)Google Scholar
  22. 22.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Li, X., Sun, Z., Kurt, A., Zhu, Q.: A sampling-based local trajectory planner for autonomous driving along a reference path. In: Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pp. 376–381. IEEE (2014)Google Scholar
  24. 24.
    Martínez-Barberá, H., Herrero-Pérez, D.: Multilayer distributed intelligent control of an autonomous car. Transp. Res. Part C Emerg. Technol. 39, 94–112 (2014)CrossRefGoogle Scholar
  25. 25.
    Parc, C.F.: Mobility-as-a-service: Turning transportation into a software industry (2014). http://venturebeat.com/2014/12/13/mobility-as-a-service-turning-transportation-into-a-software-industry/. Accessed 15 Feb 2016
  26. 26.
    Pérez, J., Milanés, V., Onieva, E.: Cascade architecture for lateral control in autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 12(1), 73–82 (2011)CrossRefGoogle Scholar
  27. 27.
    Savelsbergh, M.W., Sol, M.: The general pickup and delivery problem. Transp. Sci. 29(1), 17–29 (1995)CrossRefMATHGoogle Scholar
  28. 28.
    Schneider, J., Kirkpatrick, S.: Stochastic Optimization. Springer Science & Business Media, New York (2007)MATHGoogle Scholar
  29. 29.
    Schreiber, M., Hellmund, A.M., Stiller, C.: Multi-drive feature association for automated map generation using low-cost sensor data. In: Intelligent Vehicles Symposium (IV), 2015 IEEE, pp. 1140–1147. IEEE (2015)Google Scholar
  30. 30.
    Shalamov, V., Filchenkov, A., Chivilikhin, D.: Small-moves based mutation for pick-up and delivery problem. In: Proceedings of the Companion Publication of the 2016 on Genetic and Evolutionary Computation Conference. ACM (2016, in press)Google Scholar
  31. 31.
    Tanzmeister, G., Friedl, M., Wollherr, D., Buss, M.: Efficient evaluation of collisions and costs on grid maps for autonomous vehicle motion planning. IEEE Trans. Intell. Transp. Syst. 15(5), 2249–2260 (2014)CrossRefGoogle Scholar
  32. 32.
    Valencia, R., Morta, M., Andrade-Cetto, J., Porta, J.M.: Planning reliable paths with pose slam. IEEE Trans. Rob. 29(4), 1050–1059 (2013)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Viacheslav Shalamov
    • 1
  • Andrey Filchenkov
    • 1
  • Anatoly Shalyto
    • 1
  1. 1.Computer Technologies LabITMO UniversitySt. PetersburgRussia

Personalised recommendations