Advertisement

MeLiF+: Optimization of Filter Ensemble Algorithm with Parallel Computing

  • Ilya Isaev
  • Ivan Smetannikov
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 475)

Abstract

Search of algorithms ensemble – that is, best algorithms combination is common used approach in machine learning. MeLiF algorithm uses this technique for filter feature selection. In our research we proposed parallel version of this algorithm and showed that it is not only improves algorithm performance significantly, but also improves feature selection quality.

Keywords

Feature selection Variable selection Attribute selection Ensemble learning Feature filters Metrics aggregation MeLiF Parallel computing 

Notes

Acknowledgements

Authors would like to thank Julia Ugarkina and Andrey Filchenkov for useful comments and proofreading. This work was financially supported by the Government of Russian Federation, Grant 074-U01.

References

  1. 1.
    Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2010)CrossRefGoogle Scholar
  2. 2.
    Auffarth, B., López, M., Cerquides, J.: Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images. In: Perner, P. (ed.) ICDM 2010. LNCS, vol. 6171, pp. 248–262. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inform. Sci. 282, 111–135 (2014)CrossRefGoogle Scholar
  4. 4.
    Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: An ensemble of filters and classifiers for microarray data classification. Pattern Recogn. 45(1), 531–539 (2012)CrossRefGoogle Scholar
  5. 5.
    Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  6. 6.
    Chuang, L.Y., Yang, C.H., Wu, K.C., Yang, C.H.: A hybrid feature selection method for dna microarray data. Comput. Biol. Med. 41(4), 228–237 (2011)CrossRefGoogle Scholar
  7. 7.
    Desautels, T., Krause, A., Burdick, J.W.: Parallelizing exploration-exploitation tradeoffs in gaussian process bandit optimization. J. Mach. Learn. Res. 15(1), 3873–3923 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dietterich, T.G.: Ensemble methods in machine learning. In: Meyers, R.A. (ed.) Multiple Classifier Systems, pp. 1–15. Springer, New York (2000)CrossRefGoogle Scholar
  9. 9.
    Filchenkov, A., Dolganov, V., Smetannikov, I.: Pca-based algorithm for constructing ensembles of feature ranking filters. In: Proceedings of ESANN Conference, pp. 201–206 (2015)Google Scholar
  10. 10.
    Haury, A.C., Gestraud, P., Vert, J.P.: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PloS ONE 6(12), e28210 (2011)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Xu, H., Wang, X., Silamu, W.: Maximum f1-score discriminative training criterion for automatic mispronunciation detection. Trans. Audio Speech Lang. Process. 23(4), 787–797 (2015)CrossRefGoogle Scholar
  12. 12.
    Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  13. 13.
    Smetannikov, I., Filchenkov, A.: MeLiF: filter ensemble learning algorithm for gene selection. In: Advanced Science Letters. American Scientific Publisher (2016, to appear)Google Scholar
  14. 14.
    Waikato, T.U.: Weka 3: Data Mining Software in Java (2016). http://www.cs.waikato.ac.nz/ml/weka/. Accessed 7 May 2016

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  1. 1.Computer Science DepartmentITMO UniversitySt. PetersburgRussia

Personalised recommendations