Precedence-Constrained Scheduling Problems Parameterized by Partial Order Width

  • René van Bevern
  • Robert Bredereck
  • Laurent Bulteau
  • Christian Komusiewicz
  • Nimrod Talmon
  • Gerhard J. Woeginger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9869)

Abstract

Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1–2):533–562), we show that \(\hbox {P2}|\hbox {prec}, p_{j}{\in }\{1,2\}|C_{\max }\), the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of \(k\) other given words, is W[2]-hard parameterized by \(k\), thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75–82), we show that the more general Resource-Constrained Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.

Keywords

Resource-constrained project scheduling Parallel identical machines Makespan minimization Parameterized complexity Shuffle product 

Notes

Acknowledgments

The authors are thankful to Sergey Sevastyanov for pointing out the work of Akers [1] and Servakh [14]. This research was initiated at the annual research retreat of the algorithms and complexity group of TU Berlin, April 3–9, 2016, Krölpa, Germany.

References

  1. 1.
    Akers Jr., S.B.: A graphical approach to production scheduling problems. Oper. Res. 4(2), 244–245 (1956)CrossRefGoogle Scholar
  2. 2.
    van Bevern, R.: Fixed-parameter algorithms in operations research: opportunities and challenges. Parameterized Complex. News 12(1), 4–6 (2016)Google Scholar
  3. 3.
    Bodlaender, H.L., Fellows, M.R.: W[2]-hardness of precedence constrained \(k\)-processor scheduling. Oper. Res. Lett. 18(2), 93–97 (1995)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Amsterdam (2015)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Du, J., Leung, J.Y.T., Young, G.H.: Scheduling chain-structured tasks to minimize makespan and mean flow time. Inform. Comput. 92(2), 219–236 (1991)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small width and graphs of small Dilworth number. Order 20(4), 351–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)MATHGoogle Scholar
  9. 9.
    Hardgrave, W.W., Nemhauser, G.L.: A geometric model and a graphical algorithm for a sequencing problem. Oper. Res. 11(6), 889–900 (1963)CrossRefMATHGoogle Scholar
  10. 10.
    Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence constraints. Oper. Res. 26(1), 22–35 (1978)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Math. Program. 154(1–2), 533–562 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rizzi, Romeo, Vialette, Stéphane: On recognizing words that are squares for the shuffle product. In: Bulatov, Andrei A., Shur, Arseny M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 235–245. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Schwindt, C., Zimmermann, J. (eds.): Handbook on Project Management and Scheduling. International Handbooks on Information Systems. Springer, Heidelberg (2015)Google Scholar
  14. 14.
    Servakh, V.V.: Effektivno razreshimy sluchaj zadachi kalendarnogo planirovaniya s vozobnovimymi resursami. Diskretn. Anal. Issled. Oper. 7(1), 75–82 (2000)MathSciNetGoogle Scholar
  15. 15.
    Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. J. Comput. Syst. Sci. 28(3), 345–358 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • René van Bevern
    • 1
  • Robert Bredereck
    • 2
  • Laurent Bulteau
    • 3
  • Christian Komusiewicz
    • 4
  • Nimrod Talmon
    • 5
  • Gerhard J. Woeginger
    • 6
  1. 1.Novosibirsk State UniversityNovosibirskRussian Federation
  2. 2.TU BerlinBerlinGermany
  3. 3.Université Paris-Est Marne-la-ValléeChamps-sur-MarneFrance
  4. 4.Friedrich-Schiller-Universität JenaJenaGermany
  5. 5.Weizmann Institute of ScienceRehovotIsrael
  6. 6.TU EindhovenEindhovenThe Netherlands

Personalised recommendations