Advertisement

Communication in Teams - An Expression of Social Conflicts

  • Jil Klünder
  • Kurt Schneider
  • Fabian Kortum
  • Julia Straube
  • Lisa Handke
  • Simone Kauffeld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9856)

Abstract

The more members a team has, the more information needs to be shared with single team members or within the whole team. Sufficient information sharing is difficult to ensure, since a project leader will not be fully aware of all on-going information and communication within the team. In software engineering, information flow is essential for project success. In each part of the process, information like requirements or design decisions needs to be communicated with appropriate persons. Neither missing nor wrong implemented requirements are desirable, since extra working hours or incomplete working results need to be paid. Therefore, the right amount of information sharing is highly desirable. To ensure this, communication is a mandatory requisite. Furthermore, knowing about social conflicts is suitable, since these influence the information flow.

In an experiment with 34 student software projects, we collected data referring to internal team communication and mood. In these projects, we could show a correlation between chosen communication channels, social conflicts and mood. Since social conflicts foster an insufficient information flow, knowing about these helps software developing teams to reach higher quality and a higher customer satisfaction.

Keywords

Team Member Positive Affect Communication Channel Social Network Analysis Project Leader 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by the German Research Society (DFG) under grant number 263807701 (Project TeamFLOW, 2015–2017).

References

  1. 1.
    Ambler, S.W., et al.: Agile modeling (2002)Google Scholar
  2. 2.
    Balijepally, V.: Collaborative software development in agile methodologies - Perspectives from small group research. In: AMCIS 2005 Proceedings (2005)Google Scholar
  3. 3.
    Barsade, S.G.: The ripple effect: emotional contagion and its influence on group behavior. Adm. Sci. Q. 47(4), 644–675 (2002)CrossRefGoogle Scholar
  4. 4.
    Bjarnason, E.: Distances between requirements engineering and later software development activities: a systematic map. In: Doerr, J., Opdahl, A.L. (eds.) REFSQ 2013. LNCS, vol. 7830, pp. 292–307. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-37422-7_21 CrossRefGoogle Scholar
  5. 5.
    Cockburn, A.: Agile Software Development: The Cooperative Game. Pearson Education, London (2006)Google Scholar
  6. 6.
    Collins, A.L., Lawrence, S.A., Troth, A.C., Jordan, P.J.: Group affective tone: a review and future research directions. J. Organ. Behav. 34, 43–62 (2013)CrossRefGoogle Scholar
  7. 7.
    Daft, R.L., Lengel, R.H.: Information richness. A new approach to managerial behavior and organization design. Technical report, DTIC Document (1983)Google Scholar
  8. 8.
    Damian, D., Marczak, S., Kwan, I.: Collaboration patterns and the impact of distance on awareness in requirements-centred social networks. In: 15th IEEE International Requirements Engineering Conference, RE 2007, pp. 59–68. IEEE (2007)Google Scholar
  9. 9.
    Dennis, A.R., Fuller, R.M., Valacich, J.S.: Media, tasks, and communication processes: a theory of media synchronicity. MIS Q. 32(3), 575–600 (2008)Google Scholar
  10. 10.
    Figl, K.: Team and media competencies in information systems. Oldenbourg Verlag (2010)Google Scholar
  11. 11.
    Freeman, L.C., Roeder, D., Mulholland, R.R.: Centrality in social networks: II. Experimental results. Soc. Networks 2(2), 119–141 (1979)CrossRefGoogle Scholar
  12. 12.
    Gersick, C.J.: Time and transition in work teams: toward a new model of group development. Acad. Manage. J. 31(1), 9–41 (1988)CrossRefGoogle Scholar
  13. 13.
    Jarvenpaa, S.L., Shaw, T.R., Staples, D.S.: Toward contextualized theories of trust: the role of trust in global virtual teams. Inf. Syst. Res. 15(3), 250–267 (2004)CrossRefGoogle Scholar
  14. 14.
    Jehn, K.A.: A multimethod examination of the benefits and detriments of intragroup conflict. Adm. Sci. Q. 40, 256–282 (1995)CrossRefGoogle Scholar
  15. 15.
    Jehn, K.A., Mannix, E.A.: The dynamic nature of conflict: a longitudinal study of intragroup conflict and group performance. Acad. Manage. J. 44(2), 238–251 (2001)CrossRefGoogle Scholar
  16. 16.
    Kauffeld, S., Lehmann-Willenbrock, N.: Meetings matter effects of team meetings on team and organizational success. Small Group Res. 43(2), 130–158 (2012)CrossRefGoogle Scholar
  17. 17.
    Knight, A.P.: Mood at the midpoint: affect and change in exploratory search over time in teams that face a deadline. Organ. Sci. 26(1), 99–118 (2013)CrossRefGoogle Scholar
  18. 18.
    Knight, A.P., Eisenkraft, N.: Positive is usually good, negative is not always bad: the effects of group affect on social integration and task performance. J. Appl. Psychol. 100(4), 1214 (2015)CrossRefGoogle Scholar
  19. 19.
    Kraut, R.E., Streeter, L.A.: Coordination in software development. Commun. ACM 38(3), 69–82 (1995)CrossRefGoogle Scholar
  20. 20.
    Krohne, H.W., Egloff, B., Kohlmann, C.W., Tausch, A.: Untersuchungen mit einer deutschen Version der “Positive and Negative Affect Schedule” (PANAS). DIAGNOSTICA-GOTTINGEN- 42, 139–156 (1996)Google Scholar
  21. 21.
    Kuhl, J., Kazén, M.: Volitional facilitation of difficult intentions: joint activation of intention memory and positive affect removes stroop interference. J. Exp. Psychol. Gen. 128(3), 382 (1999)CrossRefGoogle Scholar
  22. 22.
    Lehmann-Willenbrock, N., Grohmann, A., Kauffeld, S.: Task and relationship conflict at work. Eur. J. Psychol. Assess. 27, 171–178 (2011)CrossRefGoogle Scholar
  23. 23.
    Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile practices on communication in software development. Empirical Softw. Eng. 13(3), 303–337 (2008)CrossRefGoogle Scholar
  24. 24.
    Prikladnicki, R.: Propinquity in global software engineering: examining perceived distance in globally distributed project teams. J. Softw. Evol. Process 24(2), 119–137 (2012)CrossRefGoogle Scholar
  25. 25.
    Sauer, N.C., Kauffeld, S.: Meetings as networks: applying social network analysis to team interaction. Commun. Methods Measures 7(1), 26–47 (2013)CrossRefGoogle Scholar
  26. 26.
    Schneider, K., Liskin, O.: Exploring FLOW distance in project communication. In: Proceedings of 8th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE 2015), ICSE 2015 (2015)Google Scholar
  27. 27.
    Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Requirements compliance as a measure of project success. In: Proceedings of the 4th IEEE Global Engineering Education Conference (EDUCON 2013) (2013)Google Scholar
  28. 28.
    Schneider, K., Liskin, O., Paulsen, H., Kauffeld, S.: Media, mood, and meetings: related to project success? ACM Trans. Comput. Educ. (TOCE) 15(4), 21 (2015)Google Scholar
  29. 29.
    Sondermann, J.P.: Interne Qualitätsanforderungen und Anforderungsbewertung. Handbuch Qualitätsmanagement/Masing, München 2007, pp. 387–404 (2007)Google Scholar
  30. 30.
    Stapel, K.: Informationsflusstheorie der Softwareentwicklung. Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, München, April 2012Google Scholar
  31. 31.
    Stapel, K., Knauss, E., Schneider, K.: Using FLOW to improve communication of requirements in globally distributed software projects. In: Collaboration and Intercultural Issues on Requirements: Communication, Understanding and Softskills, 2009, pp. 5–14. IEEE (2009)Google Scholar
  32. 32.
    Totterdell, P.: Catching moods and hitting runs: mood linkage and subjective performance in professional sport teams. J. Appl. Psychol. 85(6), 848 (2000)CrossRefGoogle Scholar
  33. 33.
    Totterdell, P., Wall, T., Holman, D., Diamond, H., Epitropaki, O.: Affect networks: a structural analysis of the relationship between work ties and job-related affect. J. Appl. Psychol. 89(5), 854 (2004)CrossRefGoogle Scholar
  34. 34.
    Waller, M.J., Zellmer-Bruhn, M.E., Giambatista, R.C.: Watching the clock: group pacing behavior under dynamic deadlines. Acad. Manag. J. 45(5), 1046–1055 (2002)CrossRefGoogle Scholar
  35. 35.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54(6), 1063 (1988)CrossRefGoogle Scholar
  36. 36.
    Watzlawick, P., Bavelas, J.B., Jackson, D.D., O’Hanlon, B.: Pragmatics of Human Communication: A Study of Interactional Patterns. Pathologies and Paradoxes. WW Norton & Company, New York (2011)Google Scholar
  37. 37.
    Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software Engineering. Springer Science & Business Media, New York (2012)CrossRefzbMATHGoogle Scholar
  38. 38.
    Wolf, T., Schroter, A., Damian, D., Nguyen, T.: Predicting build failures using social network analysis on developer communication. In: Proceedings of the 31st International Conference on Software Engineering, pp. 1–11. IEEE Computer Society (2009)Google Scholar
  39. 39.
    Zijlstra, F.R., Waller, M.J., Phillips, S.I.: Setting the tone: early interaction patterns in swift-starting teams as a predictor of effectiveness. Eur. J. Work Organ. Psychol. 21(5), 749–777 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Jil Klünder
    • 1
  • Kurt Schneider
    • 1
  • Fabian Kortum
    • 1
  • Julia Straube
    • 2
  • Lisa Handke
    • 2
  • Simone Kauffeld
    • 2
  1. 1.Software Engineering GroupLeibniz Universität HannoverHannoverGermany
  2. 2.Department of Industrial/Organizational and Social PsychologyTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations