Hierarchical ZSM-5 Zeolite Nanosurfaces with High Porosity—Structural, Morphological and Textural Investigations

  • S. K. Jesudoss
  • J. Judith VijayaEmail author
  • A. Anancia Grace
  • L. John Kennedy
  • S. Sivasanker
  • P. Kathirgamanathan
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 189)


The present paper describes the successful synthesis of hierarchical ZSM-5 zeolite nanosurfaces with high porosity from the rice straw ash (RSA) by means of the hydrothermal method at varying time intervals in the presence of small amount of tetrapropylammonium bromide as a single template. The synthesized samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high resolution scanning electron microscopy (HR-SEM), and nitrogen adsorption–desorption analysis (BET). The XRD pattern confirms the formation of pure ZSM‐5 zeolite crystalline phase without any impurity phases. The IR spectrum shows a vibration band at 548 cm−1, which is assigned to the double 5-rings of MFI-type zeolites. The surface area results reveal the formation of additional mesoporosity without destroying the intensive microporosity in a hierarchical ZSM-5 zeolite, which is due to the addition of TPABr during the synthesis. The characterization results conclude that the long time process of hierarchical ZSM-5 zeolite nanosurfaces with high porosity have produced high crystallinity.


Rice Straw High Resolution Scanning Electron Microscopy Zeolite Surface Tetrapropylammonium Bromide Material Rice Straw 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors duly acknowledge the financial support rendered by Loyola college, Tamil Nadu, India through Loyola College-Times of India (LC-TOI) Major Research Project scheme vide (Project Code: 2LCTOI14CHM003, dated 25.11.2014) to the first author.


  1. 1.
    Dey, K.P., Ghosh, S., Naskar, M.K.: Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source. Ceram. Int. 39, 2153–2157 (2013)CrossRefGoogle Scholar
  2. 2.
    Jiang, J., Duanmu, C., Yang, Y., Gu, X., Chen, J.: Synthesis and characterization of high siliceous ZSM-5 zeolite from acid-treated palygorskite. Powder Technol. 251, 9–14 (2014)CrossRefGoogle Scholar
  3. 3.
    Motsi, T., Rowson, N.A., Simmons, M.J.H.: Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 101, 42–49 (2011)CrossRefGoogle Scholar
  4. 4.
    Egeblad, K., Christensen, C.H., Kustova, M., Christensen, C.H.: Templating mesoporous zeolites. Chem. Mater. 20, 946–960 (2008)CrossRefGoogle Scholar
  5. 5.
    Argauer, R.J., Landolt G.R.: US Patent 3 702 886 A. (1972)Google Scholar
  6. 6.
    Narayanan, S., Vijaya, J.J., Sivasanker, S., Yang, S., Kennedy, L.J.: Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method. Chinese J. Catal. 35, 1892–1899 (2014)CrossRefGoogle Scholar
  7. 7.
    Pan, F., Lu, X., Wang, Y., Chen, S., Wang, T., Yan, Y.: Synthesis and crystallization kinetics of ZSM-5 without organic template from coal-series kaolinite. Micropor. Mesopor. Mater. 184, 134–140 (2014)CrossRefGoogle Scholar
  8. 8.
    Azizi, S., Yousefpour, M.: Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. J. Mater. Sci. 45, 5692–5697 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Gadde, B., Menke, C., Wassmann, R.: Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenerg. 33, 1532–1546 (2009)CrossRefGoogle Scholar
  10. 10.
    Hamdan, H., Muhid, M.N.M., Endud, S., Listiorini, E., Ramli, Z.: 29Si MAS NMR, XRD and FESEM studies of rice husk silica for the synthesis of zeolites. J. Non-Cryst. Solids 211, 126–131 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Azizi, S.N., Yousefpour, M.: Spectroscopic studies of different kind of rice husk samples grown in North of Iran and the extracted silica by using XRD, XRF, IR, AA and NMR techniques. Eurasian J. Anal. Chem. 3, 298–306 (2008)Google Scholar
  12. 12.
    Yusof, A.M., Nizam, N.A., Rashid, N.A.A.: Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J. Porous Mater. 17, 39–47 (2010)CrossRefGoogle Scholar
  13. 13.
    Barrer, R.M.: The hydrothermal chemistry of zeolites. Academic Press, London (1982)Google Scholar
  14. 14.
    Wang, L., Yin, C., Shan, Z., Liu, S., Du, Y., Xiao, F.S.: Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids Surf. A 340, 126–130 (2009)CrossRefGoogle Scholar
  15. 15.
    Becheri, A., Dürr, M., Nostro, P.L., Baglioni, P.: Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers. J. Nanopart. Res. 10, 679–689 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Guo, Y.P., Wang, H.J., Guo, Y.J., Guo, L.H., Chu, L.F., Guo, C.X.: Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem. Eng. J. 166, 391–400 (2011)CrossRefGoogle Scholar
  17. 17.
    Narayanan, S., Vijaya, J.J., Sivasanker, S., Yang, S., Kennedy, L.J.: Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method. Chinese J. Catal. 35, 1892–1899 (2014)CrossRefGoogle Scholar
  18. 18.
    Chester, A.W., Derouane, E.G.: Zeolite Characterization and Catalysis: A Tutorial. Springer, (2009)Google Scholar
  19. 19.
    Vijaya, J.J., Kennedy, L.J., Sekaran, G., Nagaraja, K.S.: Synthesis, characterization and humidity sensing properties of Cu–Sr–Al mixed metal oxide composites. Mater. Res. Bull. 43, 473–482 (2008)CrossRefGoogle Scholar
  20. 20.
    Schmidt, F., Lohe, M.R., Buchner, B., Giordanino, F., Bonino, F., Kaskel, S.: Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Micropor. Mesopor. Mater. 165, 148–157 (2013)CrossRefGoogle Scholar
  21. 21.
    Sang, Y., Liu, H., He, S., Li, H., Jiao, Q., Wu, Q., Sun, K.: Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. J. Energy Chem. 22, 769–777 (2013)CrossRefGoogle Scholar
  22. 22.
    Wang, Y.Y., Gin, G.Q., Guo, X.Y.: Growth of ZSM-5 coating on biomorphic porous silicon carbide derived from durra. Micropor. Mesopor. Mater. 118, 302–306 (2009)CrossRefGoogle Scholar
  23. 23.
    Fernandez, C., Stan, I., Gilson, J.P., Thomas, K., Vicente, A., Bonilla, A., Ramirez, J.P.: Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chem. Eur. J. 16, 6224–6233 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • S. K. Jesudoss
    • 1
  • J. Judith Vijaya
    • 1
    Email author
  • A. Anancia Grace
    • 1
  • L. John Kennedy
    • 2
  • S. Sivasanker
    • 3
  • P. Kathirgamanathan
    • 4
  1. 1.Catalysis and Nanomaterials Research LaboratoryDepartment of Chemistry, Loyola CollegeChennaiIndia
  2. 2.Materials DivisionSchool of Advanced Sciences, Vellore Institute of Technology (VIT) UniversityChennaiIndia
  3. 3.National Centre for Catalysis ResearchIndian Institute of Technology MadrasChennaiIndia
  4. 4.Organic ElectronicsWolfson Centre, Brunel UniversityUxbridgeUK

Personalised recommendations