Verifying Real-Time Properties of Multi-agent Systems via SMT-Based Bounded Model Checking

  • Agnieszka M. Zbrzezny
  • Andrzej Zbrzezny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9862)


We present a satisfiability modulo theories based bounded model checking (SMT-based BMC) method for timed interpreted systems (\(\mathrm{\mathbb {TIS}}\)) and for properties expressible in the existential fragment of a Real-Time Computation Tree Logic with epistemic components (RTECTLK). We implemented the standard BMC algorithm and evaluated it for two multi-agent systems: a timed train controller system and a timed generic pipeline paradigm. We used the Z3 solver.


Abstract Model Global State Satisfiability Modulo Theory Epistemic Modality Symbolic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)MATHGoogle Scholar
  2. 2.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories (chap. 26). In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. In: Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  4. 4.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  5. 5.
    Clarke, E., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and complexity of bounded model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A.: Temporal and modal logic (chap. 16). In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 996–1071. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  7. 7.
    Emerson, E.A., Mok, A.K., Sistla, A.P., Srinivasan, J.: Quantitative temporal reasoning. Real-Time Syst. 4(4), 331–352 (1992)CrossRefMATHGoogle Scholar
  8. 8.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  9. 9.
    Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Jones, A.V., Lomuscio, A.: Distributed BDD-based BMC for the verification of multi-agent systems. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 675–682. IFAAMAS (2010)Google Scholar
  11. 11.
    Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M., Woźna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and real-time. Fundamenta Informaticae 85(1–4), 313–328 (2008)MathSciNetMATHGoogle Scholar
  12. 12.
    Levesque, H.: A Logic of implicit and explicit belief. In: Proceedings of the 6th National Conference of the AAAI, pp. 198–202. Morgan Kaufman, Palo Alto (1984)Google Scholar
  13. 13.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Stud. Logica. 75(1), 63–92 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mȩski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: BDD- versus SAT-based bounded model checking for the existential fragment of linear temporal logic with knowledge: algorithms and their performance. Auton. Agents and Multi-agent Syst. 28(4), 558–604 (2014)CrossRefGoogle Scholar
  16. 16.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Wooldridge, M.: An Introduction to Multi-agent Systems, 2nd edn. Wiley, Hoboken (2009)Google Scholar
  20. 20.
    Woźna-Szcześniak, B.: SAT-based bounded model checking for weighted deontic interpreted systems. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 444–455. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Woźna-Szcześniak, B., Zbrzezny, A., Zbrzezny, A.: The BMC method for the existential part of RTCTLK and interleaved interpreted systems. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 551–565. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Woźna-Szcześniak, B., Zbrzezny, A.: Checking EMTLK properties of timed interpreted systems via bounded model checking. Studia Logica, 1–38 (2015)Google Scholar
  23. 23.
    Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Informaticae 85(1–4), 513–531 (2008)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IMCS, Jan Długosz UniversityCzȩstochowaPoland

Personalised recommendations