Resistance to Corruption of General Strategic Argumentation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9862)

Abstract

[16, 18] introduced a model of corruption within strategic argumentation, and showed that some forms of strategic argumentation are resistant to two forms of corruption: collusion and espionage. Such a model provides a (limited) basis on which to trust agents acting on our behalf. However, that work only addressed the grounded and stable argumentation semantics. Here we extend this work to several other well-motivated semantics. We must consider a greater number of strategic aims that players may have, as well as the greater variety of semantics. We establish the complexity of several computational problems related to corruption in strategic argumentation, for the aims and semantics we study. From these results we identify that strategic argumentation under the aims and semantics we study is resistant to espionage. Resistance to collusion varies according to the player’s aim and the argumentation semantics, and we present a complete picture for the aims and semantics we address.

Keywords

Abstract Argumentation Argumentation Framework Complete Extension Polynomial Hierarchy Argumentation Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework for defeasible logics. In: AAAI/IAAI, pp. 405–410. AAAI Press/The MIT Press (2000)Google Scholar
  2. 2.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). http://dx.doi.org/10.1017/S0269888911000166 CrossRefGoogle Scholar
  3. 3.
    Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and monotonicity results. In: COMMA, pp. 75–86 (2010)Google Scholar
  5. 5.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93, 63–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theor. Comput. Sci. 170(1–2), 209–244 (1996). http://dx.doi.org/10.1016/S0304-3975(96)80707–9 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–1591 (2009). http://dx.doi.org/10.1016/j.artint.2009.09.001 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artif. Intell. 141(1/2), 187–203 (2002). http://dx.doi.org/10.1016/S0004-3702(02)00261–8 MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dunne, P.E., Dvořák, W., Woltran, S.: Parametric properties of ideal semantics. Artif. Intell. 202, 1–28 (2013). http://dx.doi.org/10.1016/j.artint.2013.06.004 MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dvořák, W.: On the complexity of computing the justification status of an argument. In: Modgil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 32–49. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010). http://dx.doi.org/10.1016/j.ipl.2010.04.005 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gordon, T.F., Walton, D.: Proof burdens and standards. In: Rahwan, I., Simari, G. (eds.) Argumentation in Artificial Intelligence, pp. 239–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: Strategic argumentation is NP-complete. In: Proceedings of the European Conference on Artificial Intelligence, pp. 399–404 (2014)Google Scholar
  15. 15.
    Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, pp. 67–161. Elsevier (1990)Google Scholar
  16. 16.
    Maher, M.J.: Complexity of exploiting privacy violations in strategic argumentation. In: Proceedings of the Pacific Rim International Conference on Artificial Intelligence, pp. 523–535 (2014)Google Scholar
  17. 17.
    Maher, M.J.: Relating concrete argumentation formalisms and abstract argumentation. In: Technical Communications of International Conference on Logic Programming (2015)Google Scholar
  18. 18.
    Maher, M.J.: Resistance to corruption of strategic argumentation. In: AAAI Conference on Artificial Intelligence (2016)Google Scholar
  19. 19.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argument Comput. 1, 93–124 (2010)CrossRefGoogle Scholar
  20. 20.
    Rahwan, I., Larson, K., Tohmé, F.A.: A characterisation of strategy-proofness for grounded argumentation semantics. In: Boutilier, C. (ed.) IJCAI, pp. 251–256 (2009)Google Scholar
  21. 21.
    Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991). http://dx.doi.org/10.1137/0220053 MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Torán, J.: Complexity classes defined by counting quantifiers. J. ACM 38(3), 753–774 (1991). http://doi.acm.org/10.1145/116825.116858 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Wagner, K.W.: The complexity of combinatorial problems with succinct input representation. Acta Inf. 23(3), 325–356 (1986). http://dx.doi.org/10.1007/BF00289117 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Wu, Y., Caminada, M.: A labelling-based justification status of arguments. Stud. Logic 3(4), 12–29 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia

Personalised recommendations