Cell Fate Maintenance and Reprogramming During the Oocyte-to-Embryo Transition

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 59)

Abstract

This chapter reviews our current understanding of the mechanisms that regulate reprogramming during the oocyte-to-embryo transition (OET). There are two major events reshaping the transcriptome during OET. One is the clearance of maternal transcripts in the early embryo, extensively reviewed by others. The other event, which is the focus of this chapter, is the embryonic (or zygotic) genome activation (EGA). The mechanisms controlling EGA can be broadly divided into transcriptional and posttranscriptional. The former includes the regulation of the basal transcription machinery, the regulation by specific transcription factors and chromatin modifications. The latter is performed mostly via specific RNA-binding proteins (RBPs). Different animal models have been used to decipher the regulation of EGA. These models are often biased for the specific type of regulation, which is why we discuss the models ranging from invertebrates to mammals. Whether these biases stem from incomplete understanding of EGA in these models, or reflect evolutionarily distinct solutions to EGA regulation, is a key unresolved problem in developmental biology. As the mechanisms controlling developmental reprogramming can, and in some cases have been shown to, function in differentiated cells subjected to induced reprogramming, our understanding of EGA regulation may have implications for the efficiency of induced reprogramming and, thus, for regenerative medicine.

References

  1. Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434. doi:10.1016/j.devcel.2009.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barckmann B, Simonelig M (2013) Control of maternal mRNA stability in germ cells and early embryos. Biochim Biophys Acta 1829(6–7):714–724. doi:10.1016/j.bbagrm.2012.12.011 CrossRefPubMedGoogle Scholar
  3. Baugh LR, Hill AA, Claggett JM, Hill-Harfe K, Wen JC, Slonim DK, Brown EL, Hunter CP (2005) The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development 132(8):1843–1854. doi:10.1242/dev.01782 CrossRefPubMedGoogle Scholar
  4. Bellier S, Chastant S, Adenot P, Vincent M, Renard JP, Bensaude O (1997) Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J 16(20):6250–6262. doi:10.1093/emboj/16.20.6250 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benoit B, He CH, Zhang F, Votruba SM, Tadros W, Westwood JT, Smibert CA, Lipshitz HD, Theurkauf WE (2009) An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition. Development 136(6):923–932. doi:10.1242/dev.031815 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R (2009) Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 17(3):355–364. doi:10.1016/j.devcel.2009.08.003 CrossRefPubMedGoogle Scholar
  7. Bogdanovic O, Long SW, van Heeringen SJ, Brinkman AB, Gomez-Skarmeta JL, Stunnenberg HG, Jones PL, Veenstra GJ (2011) Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res 21(8):1313–1327. doi:10.1101/gr.114843.110 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brevini TA, Pennarossa G, Vanelli A, Maffei S, Gandolfi F (2012) Parthenogenesis in non-rodent species: developmental competence and differentiation plasticity. Theriogenology 77(4):766–772. doi:10.1016/j.theriogenology.2011.11.010 CrossRefPubMedGoogle Scholar
  9. Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20(13):1744–1754. doi:10.1101/gad.1435106 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20(3):282–289. doi:10.1038/nsmb.2489 CrossRefPubMedGoogle Scholar
  11. Cecere G, Hoersch S, O’Keeffe S, Sachidanandam R, Grishok A (2014) Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape. Nat Struct Mol Biol 21(4):358–365. doi:10.1038/nsmb.2801 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP (2005) A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 278(2):367–380. doi:10.1016/j.ydbio.2004.11.032 CrossRefPubMedGoogle Scholar
  13. Ciosk R, DePalma M, Priess JR (2006) Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311(5762):851–853. doi:10.1126/science.1122491 CrossRefPubMedGoogle Scholar
  14. Claycomb JM, Batista PJ, Pang KM, Gu W, Vasale JJ, van Wolfswinkel JC, Chaves DA, Shirayama M, Mitani S, Ketting RF, Conte D Jr, Mello CC (2009) The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139(1):123–134. doi:10.1016/j.cell.2009.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cook MS, Munger SC, Nadeau JH, Capel B (2011) Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background. Development 138(1):23–32. doi:10.1242/dev.057000 CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Renzis S, Elemento O, Tavazoie S, Wieschaus EF (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol 5(5):e117. doi:10.1371/journal.pbio.0050117 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dolci S, Campolo F, De Felici M (2015) Gonadal development and germ cell tumors in mouse and humans. Semin Cell Dev Biol 45:114–123. doi:10.1016/j.semcdb.2015.10.002 CrossRefPubMedGoogle Scholar
  18. Dunican DS, Ruzov A, Hackett JA, Meehan RR (2008) xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function. Development 135(7):1295–1302. doi:10.1242/dev.016402 CrossRefPubMedGoogle Scholar
  19. Edgar BA, Schubiger G (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell 44(6):871–877CrossRefPubMedGoogle Scholar
  20. Gu W, Shirayama M, Conte D Jr, Vasale J, Batista PJ, Claycomb JM, Moresco JJ, Youngman EM, Keys J, Stoltz MJ, Chen CC, Chaves DA, Duan S, Kasschau KD, Fahlgren N, Yates JR 3rd, Mitani S, Carrington JC, Mello CC (2009) Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 36(2):231–244. doi:10.1016/j.molcel.2009.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gurdon JB, Uehlinger V (1966) “Fertile” intestine nuclei. Nature 210(5042):1240–1241CrossRefPubMedGoogle Scholar
  22. Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135(1):149–160. doi:10.1016/j.cell.2008.07.040 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, van IJcken WF, Armant O, Ferg M, Strahle U, Carninci P, Muller F, Lenhard B (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507(7492):381–385. doi:10.1038/nature12974 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Harrison MM, Li XY, Kaplan T, Botchan MR, Eisen MB (2011) Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7(10):e1002266. doi:10.1371/journal.pgen.1002266 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, Neugebauer KM (2014) The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep 6(2):285–292. doi:10.1016/j.celrep.2013.12.030 CrossRefPubMedGoogle Scholar
  26. Hussain SA, Ma YT, Palmer DH, Hutton P, Cullen MH (2008) Biology of testicular germ cell tumors. Expert Rev Anticancer Ther 8(10):1659–1673. doi:10.1586/14737140.8.10.1659 CrossRefPubMedGoogle Scholar
  27. Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le Sage C, Nagel R, Voorhoeve PM, van Duijse J, Orom UA, Lund AH, Perrakis A, Raz E, Agami R (2007) RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131(7):1273–1286. doi:10.1016/j.cell.2007.11.034 CrossRefPubMedGoogle Scholar
  28. Kerr CL, Shamblott MJ, Gearhart JD (2006) Pluripotent stem cells from germ cells. Methods Enzymol 419:400–426. doi:10.1016/S0076-6879(06)19016-3 CrossRefPubMedGoogle Scholar
  29. Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48(3):399–407CrossRefPubMedGoogle Scholar
  30. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428(6985):860–864. doi:10.1038/nature02402 CrossRefPubMedGoogle Scholar
  31. LaMarca MJ, Fidler MC, Smith LD, Keem K (1975) Hormonal effects on RNA synthesis by stage 6 oocytes of Xenopus laevis. Dev Biol 47(2):384–393CrossRefPubMedGoogle Scholar
  32. Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613. doi:10.1146/annurev-cellbio-100913-013027 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (2013) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503(7476):360–364. doi:10.1038/nature12632 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leichsenring M, Maes J, Mossner R, Driever W, Onichtchouk D (2013) Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341(6149):1005–1009. doi:10.1126/science.1242527 CrossRefPubMedGoogle Scholar
  35. Li XY, Harrison MM, Villalta JE, Kaplan T, Eisen MB (2014) Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition. eLife 3. doi:10.7554/eLife.03737
  36. Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C (2008) The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456(7220):400–403. doi:10.1038/nature07388 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lindeman LC, Andersen IS, Reiner AH, Li N, Aanes H, Ostrup O, Winata C, Mathavan S, Muller F, Alestrom P, Collas P (2011) Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell 21(6):993–1004. doi:10.1016/j.devcel.2011.10.008 CrossRefPubMedGoogle Scholar
  38. Moore GP, Lintern-Moore S, Peters H, Faber M (1974) RNA synthesis in the mouse oocyte. J Cell Biol 60(2):416–422CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nepal C, Hadzhiev Y, Previti C, Haberle V, Li N, Takahashi H, Suzuki AM, Sheng Y, Abdelhamid RF, Anand S, Gehrig J, Akalin A, Kockx CE, van der Sloot AA, van Ijcken WF, Armant O, Rastegar S, Watson C, Strahle U, Stupka E, Carninci P, Lenhard B, Muller F (2013) Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis. Genome Res 23(11):1938–1950. doi:10.1101/gr.153692.112 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30(3):675–686CrossRefPubMedGoogle Scholar
  41. Nien CY, Liang HL, Butcher S, Sun Y, Fu S, Gocha T, Kirov N, Manak JR, Rushlow C (2011) Temporal coordination of gene networks by Zelda in the early Drosophila embryo. PLoS Genet 7(10):e1002339. doi:10.1371/journal.pgen.1002339 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Paranjpe SS, Veenstra GJ (2015) Establishing pluripotency in early development. Biochim Biophys Acta 1849(6):626–636. doi:10.1016/j.bbagrm.2015.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pasque V, Jullien J, Miyamoto K, Halley-Stott RP, Gurdon JB (2011) Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 27(12):516–525. doi:10.1016/j.tig.2011.08.002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7(4):597–606. doi:10.1016/j.devcel.2004.09.004 CrossRefPubMedGoogle Scholar
  45. Perez-Montero S, Carbonell A, Moran T, Vaquero A, Azorin F (2013) The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 26(6):578–590. doi:10.1016/j.devcel.2013.08.011 CrossRefPubMedGoogle Scholar
  46. Robert VJ, Mercier MG, Bedet C, Janczarski S, Merlet J, Garvis S, Ciosk R, Palladino F (2014) The SET-2/SET1 histone H3K4 methyltransferase maintains pluripotency in the Caenorhabditis elegans germline. Cell Rep 9(2):443–450. doi:10.1016/j.celrep.2014.09.018 CrossRefPubMedGoogle Scholar
  47. Scheckel C, Gaidatzis D, Wright JE, Ciosk R (2012) Genome-wide analysis of GLD-1-mediated mRNA regulation suggests a role in mRNA storage. PLoS Genet 8(5):e1002742. doi:10.1371/journal.pgen.1002742 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schulz KN, Bondra ER, Moshe A, Villalta JE, Lieb JD, Kaplan T, McKay DJ, Harrison MM (2015) Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res 25(11):1715–1726. doi:10.1101/gr.192682.115 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shermoen AW, O’Farrell PH (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67(2):303–310CrossRefPubMedPubMedCentralGoogle Scholar
  50. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462. doi:10.1146/annurev.cellbio.17.1.435 CrossRefPubMedGoogle Scholar
  51. Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D (2014) The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics 198(4):1535–1558. doi:10.1534/genetics.114.168831 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stancheva I, Meehan RR (2000) Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev 14(3):313–327PubMedPubMedCentralGoogle Scholar
  53. Strome S, Updike D (2015) Specifying and protecting germ cell fate. Nat Rev Mol Cell Biol 16(7):406–416. doi:10.1038/nrm4009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA, Lipshitz HD (2007) SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev Cell 12(1):143–155. doi:10.1016/j.devcel.2006.10.005 CrossRefPubMedGoogle Scholar
  55. Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136(18):3033–3042. doi:10.1242/dev.033183 CrossRefPubMedGoogle Scholar
  56. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  57. ten Bosch JR, Benavides JA, Cline TW (2006) The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development 133(10):1967–1977. doi:10.1242/dev.02373 CrossRefPubMedGoogle Scholar
  58. Tocchini C, Keusch JJ, Miller SB, Finger S, Gut H, Stadler MB, Ciosk R (2014) The TRIM-NHL protein LIN-41 controls the onset of developmental plasticity in Caenorhabditis elegans. PLoS Genet 10(8):e1004533. doi:10.1371/journal.pgen.1004533 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308. doi:10.1126/science.1199082 CrossRefPubMedGoogle Scholar
  60. Ulbright TM (2005) Germ cell tumors of the gonads: a selective review emphasizing problems in differential diagnosis, newly appreciated, and controversial issues. Mod Pathol 18(Suppl 2):S61–S79. doi:10.1038/modpathol.3800310 CrossRefPubMedGoogle Scholar
  61. Updike DL, Knutson AK, Egelhofer TA, Campbell AC, Strome S (2014) Germ-granule components prevent somatic development in the C. elegans germline. Curr Biol 24(9):970–975. doi:10.1016/j.cub.2014.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, Rinn J, Schier AF (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464(7290):922–926. doi:10.1038/nature08866 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Voronina E, Paix A, Seydoux G (2012) The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Development 139(20):3732–3740. doi:10.1242/dev.083980 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Walser CB, Lipshitz HD (2011) Transcript clearance during the maternal-to-zygotic transition. Curr Opin Genet Dev 21(4):431–443. doi:10.1016/j.gde.2011.03.003 CrossRefPubMedGoogle Scholar
  65. Weismann A (1893) The germ-plasm: A theory of heredity. Charles Scribner’s Sons, New YorkGoogle Scholar
  66. Youngren KK, Coveney D, Peng X, Bhattacharya C, Schmidt LS, Nickerson ML, Lamb BT, Deng JM, Behringer RR, Capel B, Rubin EM, Nadeau JH, Matin A (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435(7040):360–364. doi:10.1038/nature03595 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zurita M, Reynaud E, Aguilar-Fuentes J (2008) From the beginning: The basal transcription machinery and onset of transcription in the early animal embryo. Cell Mol Life Sci 65(2):212–227. doi:10.1007/s00018-007-7295-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations