Revocable Anonymisation in Video Surveillance: A “Digital Cloak of Invisibility”

  • Linus Feiten
  • Sebastian Sester
  • Christian Zimmermann
  • Sebastian Volkmann
  • Laura Wehle
  • Bernd Becker
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 474)

Abstract

Video surveillance is an omnipresent phenomenon in today’s metropolitan life. Mainly intended to solve crimes, to prevent them by realtime-monitoring or simply as a deterrent, video surveillance has also become interesting in economical contexts; e.g. to create customer profiles and analyse patterns of their shopping behaviour. The extensive use of video surveillance is challenged by legal claims and societal norms like not putting everybody under generalised suspicion or not recording people without their consent. In this work we propose a technological solution to balance the positive and negative effects of video surveillance. With automatic image recognition algorithms on the rise, we suggest to use that technology to not just automatically identify people but blacken their images. This blackening is done with a cryptographic procedure allowing to revoke it with an appropriate key. Many of the legal and ethical objections to video surveillance could thereby be accommodated. In commercial scenarios, the operator of a customer profiling program could offer enticements for voluntarily renouncing one’s anonymity. Customers could e.g. wear a small infrared LED to signal their agreement to being tracked. After explaining the implementation details, this work outlines a multidisciplinary discussion incorporating an economic, ethical and legal viewpoint.

Keywords

Video surveillance Privacy protection Anonymity Data security 

References

  1. 1.
    Gesetzentwurf Bundesregierung Drucksache 461/00, 18 August 2000. http://dipbt.bundestag.de/doc/brd/2000/D461+00.pdf
  2. 2.
    Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors - a survey. Proc. IEEE 94(2), 357–369 (2006)CrossRefGoogle Scholar
  3. 3.
    Andriluka, M., Roth, S., Schiele, B.: Pictorial structures revisited: people detection and articulated pose estimation. In: Essa, I., Kang, S.B., Pollefeys, M. (eds.) Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 1014–1021. IEEE (2009)Google Scholar
  4. 4.
    Becker, B., Müller, G., Polian, I.: Digital tarnkappe: stealth technology for the internet of things. In: Gander, H.H., Perron, W., Poscher, R., Riescher, G., Würtenberger, T. (eds.) Resilienz in der offenen Gesellschaft. Nomos, Glashütte (2012)Google Scholar
  5. 5.
    Becker, T.: Kommentar zum BDSG sowie Datenschutzbestimmungen des TMG und TKG, 1st edn. Verlag Dr. Otto Schmidt (2013). Kai-Uwe PlathGoogle Scholar
  6. 6.
    Benenson, R., Mathias, M., Timofte, R., Gool, L.V.: Pedestrian detection at 100 frames per second. In: Belongie, S., Blake, A., Luo, J., Yuille, A. (eds.) Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 2903–2910. IEEE (2012)Google Scholar
  7. 7.
    Carrillo, P., Kalva, H., Magliveras, S.: Compression independent reversible encryption for privacy in video surveillance. EURASIP J. Inf. Secur. 2009, 5:1–5:13 (2009)Google Scholar
  8. 8.
    Cheung, S.C., Venkatesh, M., Paruchuri, J., Zhao, J., Nguyen, T.: Protecting and managing privacy information in video surveillance systems. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance, pp. 11–33. Springer, London (2009). http://dx.doi.org/10.1007/978-1-84882-301-3_2 CrossRefGoogle Scholar
  9. 9.
    Cichowski, J., Czyżewski, A., Kostek, B.: Visual data encryption for privacy enhancement in surveillance systems. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Cucchiara, R., Prati, A., Vezzani, R.: A system for automatic face obscuration for privacy purposes. Pattern Recogn. Lett. 27(15), 1809–1815 (2006). Vision for Crime Detection and PreventionCrossRefGoogle Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) Proceedings of Computer Vision and Pattern Recognition (CVPR), pp. 886–893. IEEE (2005)Google Scholar
  12. 12.
    Detterbeck, S.: Allgemeines Verwaltungsrecht, 8th edn. Verlag C. H. Beck, Munich (2010)Google Scholar
  13. 13.
    Dufaux, F., Ebrahimi, T.: Scrambling for video surveillance with privacy. In: Schmid, C., Soatto, S., Tomasi, C. (eds.) Proceedings of Computer Vision and Pattern Recognition (CVPR), Workshop Privacy Research in Vision (PRIV), pp. 160–160, June 2006Google Scholar
  14. 14.
    European Commission: Proposal for a Regulation of the European Parliament and of the Council on the protection of individuals with regard to the processing of personal data and on the free movement of such data (General Data Protection Regulation). Procedure 2012/0010/COD (2012). http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
  15. 15.
    Fried, C.: An Anatomy of Values. Harvard University Press, Cambridge (1970)CrossRefGoogle Scholar
  16. 16.
    Grin, J., Grunwald, A. (eds.): Vision Assessment: Shaping Technology in 21st Century Society Towards a Repertoire for Technology Assessment. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Huber, M., Müller-Quade, J., Nilges, T., Thal, C.: A provably privacy preserving video surveillance architecture for an assisted living community. In: 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22–26 September 2014, Stuttgart, Deutschland, pp. 563–574 (2014)Google Scholar
  18. 18.
    Leykin, A., Hammoud, R.: Real-time estimation of human attention field in LWIR and color surveillance videos. In: Proceedings of Workshop on Object Tracking and Classification Beyond the Visible Spectrum (OTCBVS), pp. 1–6. IEEE (2008)Google Scholar
  19. 19.
    Liu, X., Krahnstoever, N., Yu, T., Tu, P.: What are customers looking at? In: Macq, B. (ed.) Proceedings of Advanced Video and Signal based Surveillance (AVSS), pp. 405–410. IEEE (2007)Google Scholar
  20. 20.
    Padilla-Lopez, J.R., Chaaraoui, A.A., Florez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42(9), 4177–4195 (2015)CrossRefGoogle Scholar
  21. 21.
    Pegarkov, D.D.: National Security Issues. Nova Publishers, New York (2006)Google Scholar
  22. 22.
    Petermann, T.: Technikfolgen-Abschätzung - Konstituierung und Ausdifferenzierung eines Leitbilds. In: Bröchler, S., Simonis, G., Sundermann, K. (eds.) Handbuch Technikfolgenabschätzung, pp. 17–49. Edition Sigma (1999)Google Scholar
  23. 23.
    Ruhrmair, U., Devadas, S., Koushanfar, F.: Security based on physical unclonability and disorder. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust, pp. 65–102. Springer, New York (2011). chap. 4Google Scholar
  24. 24.
    Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg, K.: Respectful cameras: detecting visual markers in real-time to address privacy concerns. In: Henderson, T.C. (ed.) Proceedings of Intelligent Robots and Systems, pp. 971–978, October 2007Google Scholar
  25. 25.
    Senior, A., Pankanti, S., Hampapur, A., Brown, L., Tian, Y.L., Ekin, A., Connell, J., Shu, C.F., Lu, M.: Enabling video privacy through computer vision. IEEE Secur. Priv. 3(3), 50–57 (2005)CrossRefGoogle Scholar
  26. 26.
    Shi, Z., Ma, C., Cote, J., Wang, B.: Hardware implementation of hash functions. In: Tehranipoor, M., Wang, C. (eds.) Introduction to Hardware Security and Trust, pp. 27–50. Springer, New York (2011). chap. 2Google Scholar
  27. 27.
    Trojanow, I., Zeh, J.: Angriff auf die Freiheit: Sicherheitswahn: Überwachungsstaat und der Abbau bürgerlicher Rechte. Hanser, Munich (2009)Google Scholar
  28. 28.
    Walk, S., Schindler, K., Schiele, B.: Disparity statistics for pedestrian detection: combining appearance, motion and stereo. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 182–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Linus Feiten
    • 1
  • Sebastian Sester
    • 1
  • Christian Zimmermann
    • 1
  • Sebastian Volkmann
    • 1
  • Laura Wehle
    • 1
  • Bernd Becker
    • 1
  1. 1.Centre for Security and Society, University of FreiburgFreiburgGermany

Personalised recommendations