Using a Mobile Phone as a 2D Virtual Tracing Tool: Static Peephole vs. Magic Lens

  • Klen Čopič Pucihar
  • Matjaž Kljun
  • Paul Coulton
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 474)


Traditional sketching aids rely on the physical production of templates or stencils which is particularly problematic in the case of larger formats. One possible solution is 2D virtual tracing using a virtual template to create a physical sketch. This paper evaluates a mobile phone as a 2D virtual tracing tool by comparing three tracing methods: (i) a traditional tracing method with a printed template, (ii) a virtual tracing method Static Peephole (SP) in which the virtual template is manually adjusted to a physical contour by drag and pinch gestures, and (iii) a virtual tracing method augmented reality Magic Lens (ML) in which template is projected on the physical object such as paper hence navigation is possible through physical movement of the mobile device. The results show that it is possible to use mobile phones for virtual tracing, however, ML only achieved comparable performance to SP mode and traditional methods continued to be quicker and preferred by users.


Magic lens Static peephole Sketching Virtual tracing 


  1. 1.
    Bier, E., Stone, M., Pier, K.: Toolglass and magic lenses: the see-through interface. In: Proceedings of SIGRAPH, pp. 73–80. ACM (1993)Google Scholar
  2. 2.
    Chin, J.P., Diehl, V.A, Norman, L.K.: Development of an instrument measuring user satisfaction of the human-computer interface. In: Proceedings of CHI, pp. 213–218 (1988)Google Scholar
  3. 3.
    Čopič Pucihar, K., Coulton, P., Alexander, J.: Evaluating dual-view perceptual issues in handheld augmented reality: device vs. user perspective rendering. In: Proceedings of ICMI, pp. 381–388 ACM (2013)Google Scholar
  4. 4.
    Čopič Pucihar, K., Grubert, J., Kljun, M.: Dual camera magic lens for handheld AR sketching. In: Abascal, J., Barbosa, S., Fetter, M., Gross, T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9299, pp. 523–527. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Dünser, A., Billinghurst, M., Wen, J., Lehtinen, V., Nurminen, A.: Exploring the use of handheld AR for outdoor navigation. Comput. Graph. 36, 1084–1095 (2012)CrossRefGoogle Scholar
  6. 6.
    Goh, D.H.-L., Lee, C.S., Razikin, K.: Comparative evaluation of interfaces for presenting location-based information on mobile devices. In: Airong, J. (ed.) ICADL 2011. LNCS, vol. 7008, pp. 237–246. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gombač, L., Čopič Pucihar, K., Kljun, M., Coulton P., Grbac, J.: 3D virtual tracing and depth perception problem in mobile AR. In: Human Factors in Computing Systems (CHI) (2016)Google Scholar
  8. 8.
    Grubert, J., Morrison, A., Munz, H., Reitmayr, G.: Playing it real: magic lens and static peephole interfaces for games in a public space. In: Proceedings of MobileHCI (2012)Google Scholar
  9. 9.
    Grubert, J. et al.: The utility of magic lens interfaces on handheld devices for touristic map navigation. Pervasive Mob. Comput. 18, 88–103 (2014)CrossRefGoogle Scholar
  10. 10.
    Grubert, J., Schmalstieg, D.: Playing it real again: a repeated evaluation of magic lens and static peephole interfaces in public space. In: Proceedings of MobileHCI, pp. 6–9 (2013)Google Scholar
  11. 11.
    Hagbi, N., Grasset, R., Bergig, O., Billinghurst, M., El-Sana, J.: In-place sketching for content authoring in augmented reality games. In: Proceedings of VR, pp. 91–94 (2010)Google Scholar
  12. 12.
    Hagbi, N., Bergig, O., El-Sana, J., Billinghurst, M.: Shape recognition and pose estimation for mobile augmented reality. In: Proceedings of ISMAR, pp. 65–71 (2009)Google Scholar
  13. 13.
    Mehra, S., Werkhoven, P., Worring, M.: Navigating on handheld displays: dynamic versus static peephole navigation. In: Proceedings of CAADRIA, pp. 209–219 (2003)Google Scholar
  14. 14.
    Road, P., Kong, H.: SKETCHAND+ a collaborative augmented reality sketching application. In: Proceedings of CAADRIA, pp. 209–219 (2003)Google Scholar
  15. 15.
    Rohs, M., Schöning, J., Raubal, M., Essl, G., Krüger, A.: Map navigation with mobile devices: virtual versus physical movement with and without visual context categories and subject descriptors. In: Proceedings of ICMI, pp. 146–153. ACM (2007)Google Scholar
  16. 16.
    Xin, M., Sharlin, E., Sousa, M.C.: Napkin sketch - handheld mixed reality 3D sketching. In: Proceedings of VRST, pp. 223–226 (2008)Google Scholar
  17. 17.
    Yee, B., Ning, Y., Lipson, H.: Augmented reality in-situ 3D sketching of physical objects. In: Proceedings of IUI, pp. 1–4 (2009)Google Scholar
  18. 18.
    Baudisch, P., Good, N., Bellotti, V., Schraedley, P.: Keeping things in context: a comparative evaluation of focus plus context screens, overviews, and zooming. In: SIGCHI 2002, pp. 259–266 (2002)Google Scholar
  19. 19.
    Robbins, D.C., Cutrell, E., Sarin, R., Horvitz, E.: ZoneZoom: map navigation for smartphones with recursive view segmentation. In: AVI 2004, pp. 231–234 (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Klen Čopič Pucihar
    • 1
  • Matjaž Kljun
    • 1
  • Paul Coulton
    • 2
  1. 1.FAMNITUniversity of PrimorskaKoperSlovenia
  2. 2.ImaginationLancaster UniversityLancasterUK

Personalised recommendations