Egalitarian State-Transition Systems

  • Óscar Martín
  • Alberto Verdejo
  • Narciso Martí-Oliet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9942)


We argue that considering transitions at the same level as states, as first-class citizens, is advantageous in many cases. Namely, the use of atomic propositions on transitions, as well as on states, allows temporal formulas and strategy expressions to be more powerful, general, and meaningful. We define egalitarian structures and logics, and show how they generalize well-known state-based, event-based, and mixed ones. We present translations from egalitarian to non-egalitarian settings that, in particular, allow the model checking of LTLR formulas using Maude’s LTL model checker. We have implemented these translations as a prototype in Maude itself.


Modular specification State/transition structure Rewriting logic Model checking Kripke structure LTS Temporal logic Strategy 



It is comforting to realize how much a paper can improve with the help of capable referees. We are most grateful to ours.


  1. 1.
    Bae, K., Meseguer, J.: The linear temporal logic of rewriting Maude model checker. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 208–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bae, K., Meseguer, J.: A rewriting-based model checker for the linear temporal logic of rewriting. In: Kniesel, G., Pinto, J.S. (eds.) Rule 2008. ENTCS, vol. 290, pp. 19–36. Elsevier (2012)Google Scholar
  3. 3.
    Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved transitions. Fundamenta Informaticae 11, 433–452 (1988)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2), 458–487 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) Semantics of Systems of Concurrent Processes. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL model checker. In: Gadducci, F., Montanari, U. (eds.) WRLA 2002. ENTCS, vol. 71, pp. 162–187. Elsevier (2004)Google Scholar
  8. 8.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Escobar, S., Meseguer, J.: Symbolic model checking of infinite-state systems using narrowing. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 153–168. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kindler, E., Vesper, T.: ESTL: a temporal logic for events and states. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 365–384. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. TCS 27(3), 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Martín, Ó., Verdejo, A., Martí-Oliet, N.: Model checking TLR* guarantee formulas on infinite systems. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 129–150. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Martín, Ó., Verdejo, A., Martí-Oliet, N.: Synchronous products of rewrite systems. Technical report, Facultad de Informática, Universidad Complutense de Madrid (2016).
  15. 15.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. TCS 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Meseguer, J.: The temporal logic of rewriting: a gentle introduction. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 354–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on TCS, vol. 4. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using dualization and stratification. In: Reynolds, M., Terenziani, P., Moszkowski, B. (eds.) Proceedings of TIME 2012, pp. 13–20. IEEE (2012)Google Scholar
  19. 19.
    Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Óscar Martín
    • 1
  • Alberto Verdejo
    • 1
  • Narciso Martí-Oliet
    • 1
  1. 1.Facultad de InformáticaUniversidad Complutense de MadridMadridSpain

Personalised recommendations