Metalevel Algorithms for Variant Satisfiability

  • Stephen SkeirikEmail author
  • José Meseguer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9942)


Variant satisfiability is a theory-generic algorithm to decide quantifier-free satisfiability in an initial algebra \(T_{\varSigma /E}\) when the theory \((\varSigma ,E)\) has the finite variant property and its constructors satisfy a compactness condition. This paper: (i) gives a precise definition of several meta-level sub-algorithms needed for variant satisfiability; (ii) proves them correct; and (iii) presents a reflective implementation in Maude 2.7 of variant satisfiability using these sub-algorithms.


Finite variant property (FVP) Folding variant narrowing Satisfiability in initial algebras Metalevel algorithms Reflection Maude 



Partially supported by NSF Grant CNS 13-19109.


  1. 1.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. Inf. Comput. 183(2), 140–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baader, F., Schulz, K.U.: Combining constraint solving. In: Comon, H., Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, p. 104. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009). Chap. 26Google Scholar
  4. 4.
    Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. J. Satisf. Boolean Model. Comput. 3, 21–46 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith, H. (eds.) Handbook of Model Checking. Springer, Berlin (2014)Google Scholar
  6. 6.
    Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Berlin (2007)zbMATHGoogle Scholar
  7. 7.
    Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Deptartment, University of Illinois at Urbana-Champaign, February 2014.
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Meseguer, J., Stehr, M.-O.: Maude as a formal meta-tool. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, p. 1684. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic, many-sorted equational logic, horn logic with equality, and rewriting logic. Theoret. Comput. Sci. 373, 70–91 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). Accessed 12 October 2007
  12. 12.
    Comon, H.: Complete axiomatizations of some quotient term algebras. Theoret. Comput. Sci. 118(2), 167–191 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. ACM, North-Holland (1990)Google Scholar
  15. 15.
    Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3), 15 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets, and sets, and the relevant unification algorithms. Fundam. Inform. 36(2–3), 201–234 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. J. Autom. Reason. 56, 387–457 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Algebr. Log. Program. 81, 898–928 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Goguen, J., Meseguer, J.: Order-sorted algebra I. Theoret. Comput. Sci. 105, 217–273 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-sorted specifications modulo axioms. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 151–155. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15, 1155–1194 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2008)zbMATHGoogle Scholar
  24. 24.
    Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined satisfiability modulo parametric theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 602–617. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376. Springer, Heidelberg (1998)Google Scholar
  26. 26.
    Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Technical report, C.S. Department, University of Illinois at Urbana-Champaign, August 2014.
  27. 27.
    Meseguer, J.: Variant-based satisfiability in initial algebras. Technical report, University of Illinois at Urbana-Champaign, November 2015.
  28. 28.
    Mashauri, D., et al.: Variant-based satisfiability in initial algebras. In: Artho, C., et al. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 3–34. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29510-7_1 CrossRefGoogle Scholar
  29. 29.
    Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. Inf. Comput. 103(1), 114–158 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  31. 31.
    Oppen, D.C.: Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12, 291–302 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Rocha, C., Meseguer, J.: Constructors, sufficient completeness, and deadlock freedom of rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 594–609. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. Technical report, C.S. Department, University of Illinois at Urbana-Champaign, June 2016.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations