Labelled Graph Rewriting Meets Social Networks

  • Maribel Fernández
  • Hélène Kirchner
  • Bruno Pinaud
  • Jason Vallet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9942)


The intense development of computing techniques and the increasing volumes of produced data raise many modelling and analysis challenges. There is a need to represent and analyse information that is: complex –due to the presence of massive and highly heterogeneous data–, dynamic –due to interactions, time, external and internal evolutions–, connected and distributed in networks. We argue in this work that relevant concepts to address these challenges are provided by three ingredients: labelled graphs to represent networks of data or objects; rewrite rules to deal with concurrent local transformations; strategies to express control versus autonomy and to focus on points of interests. To illustrate the use of these concepts, we choose to focus our interest on social networks analysis, and more precisely in this paper on random network generation. Labelled graph strategic rewriting provides a formalism in which different models can be generated and compared. Conversely, the study of social networks, with their size and complexity, stimulates the search for structure and efficiency in graph rewriting. It also motivated the design of new or more general kinds of graphs, rules and strategies (for instance, to define positions in graphs), which are illustrated here. This opens the way to further theoretical and practical questions for the rewriting community.


Social Network Cluster Coefficient Label Graph Derivation Tree Locate Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Guy Melançon (University of Bordeaux) and all the other members of the Porgy project. We also thank the anonymous reviewer for carefully reading this paper and making valuable suggestions for improvement.


  1. 1.
    Andrei, O., Fernández, M., Kirchner, H., Melançon, G., Namet, O., Pinaud, B.: PORGY: strategy-driven interactive transformation of graphs. In: Echahed, R. (ed.) 6th International Workshop on Computing with Terms and Graphs, vol. 48, pp. 54–68 (2011)Google Scholar
  2. 2.
    Andrei, O., Kirchner, H.: A rewriting calculus for multigraphs with ports. In: Proceedings of RULE 2007. Electronic Notes in Theoretical Computer Science, vol. 219, pp. 67–82 (2008)Google Scholar
  3. 3.
    Andrei, O., Kirchner, H.: A higher-order graph calculus for autonomic computing. In: Lipshteyn, M., Levit, V.E., McConnell, R.M. (eds.) Graph Theory, Computational Intelligence and Thought. LNCS, vol. 5420, pp. 15–26. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: piggybacking rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep, M.R.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) Proceedings of PARLE, Parallel Architectures and Languages Europe. LNCS, vol. 259-II, pp. 141–158. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  7. 7.
    Barthelmann, K.: How to construct a hyperedge replacement system for a context-free set of hypergraphs. Technical report, Universität Mainz, Institut für Informatik (1996)Google Scholar
  8. 8.
    Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71, 036113 (2005)CrossRefGoogle Scholar
  9. 9.
    Bertuzzo, E., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: On spatially explicit models of cholera epidemics. J. R. Soc. Interface 7(43), 321–333 (2010)CrossRefGoogle Scholar
  10. 10.
    Borovanský, P., Kirchner, C., Kirchner, H., Moreau, P.-E., Ringeissen, C.: An overview of ELAN. ENTCS 15, 55–70 (1998)zbMATHGoogle Scholar
  11. 11.
    Brandes, U., Wagner, D.: Analysis and visualization of social networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 321–340. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Carrington, P.J., Scott, J., Wasserman, S.: Models and Methods in Social Network Analysis. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  13. 13.
    Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63, 277–293 (1956)CrossRefGoogle Scholar
  14. 14.
    Chen, W., Collins, A., Cummings, R., Ke, T., Liu, Z., Rincón, D., Sun, X., Wang, Y., Wei, W., Yuan, Y.: Influence maximization in social networks when negative opinions may emerge and propagate. In: Proceedings of the 11th SIAM International Conference on Data Mining, SDM 2011, pp. 379–390 (2011)Google Scholar
  15. 15.
    Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2010, pp. 1029–1038. ACM (2010)Google Scholar
  16. 16.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation - part I: basic concepts and double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 163–246. World Scientific (1997)Google Scholar
  17. 17.
    Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fernández, M., Kirchner, H., Pinaud, B.: Strategic port graph rewriting: an interactive modelling and analysis framework. Research report, Inria, January 2016Google Scholar
  20. 20.
    Fernández, M., Kirchner, H., Namet, O.: A strategy language for graph rewriting. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 173–188. Springer, Heidelberg (2012)Google Scholar
  21. 21.
    Fernández, M., Kirchner, H., Pinaud, B.: Strategic port graph rewriting: an interactive modelling and analysis framework. In: Bosnacki, D., Edelkamp, S., Lluch-Lafuente, A., Wijs, A. (eds.) Proceedings of the 3rd Workshop on GRAPH Inspection and Traversal Engineering, GRAPHITE 2014. EPTCS, vol. 159, pp. 15–29 (2014)Google Scholar
  22. 22.
    Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 241–250. ACM (2010)Google Scholar
  23. 23.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420 (1978)CrossRefGoogle Scholar
  24. 24.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Math. Struct. Comput. Sci. 11(5), 637–688 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kejžar, N., Nikoloski, Z., Batagelj, V.: Probabilistic inductive classes of graphs. J. Math. Sociol. 32(2), 85–109 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014). doi: 10.1093/comnet/cnu016. CrossRefGoogle Scholar
  28. 28.
    Lafont, Y.: Interaction nets. In: Proceedings of the 17th ACM Symposium on Principles of Programming Languages (POPL 1990), pp. 95–108. ACM Press (1990)Google Scholar
  29. 29.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2010, pp. 1361–1370. ACM (2010)Google Scholar
  30. 30.
    Milgram, S.: The small world problem. Psychol. Today 2, 60–67 (1967)Google Scholar
  31. 31.
    Newman, M., Barabási, A.-L., Watts, D.J.: The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, New Jersey (2006)zbMATHGoogle Scholar
  32. 32.
    Nick, B., Lee, C., Cunningham, P., Brandes, U.: Simmelian backbones: amplifying hidden homophily in facebook networks. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 525–532, August 2013Google Scholar
  33. 33.
    Pinaud, B., Melançon, G., Dubois, J.: PORGY: a visual graph rewriting environment for complex systems. Comput. Graph. Forum 31(3), 1265–1274 (2012)CrossRefGoogle Scholar
  34. 34.
    Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) Handbook of Graph Grammars, Computing by Graph Transformations. Applications, Languages, and Tools, vol. 2, pp. 3–61. World Scientific, Singapore (1998)Google Scholar
  35. 35.
    Plump, D.: The graph programming language GP. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2009. LNCS, vol. 5725, pp. 99–122. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Scott, J., Carrington, P.J.: The SAGE Handbook of Social Network Analysis. SAGE, New York (2011)Google Scholar
  37. 37.
    Vallet, J., Kirchner, H., Pinaud, B., Melançon, G.: A visual analytics approach to compare propagation models in social networks. In: Rensink, A., Zambon, E. (eds.) Proceedings of the Graphs as Models, GaM 2015. EPTCS, vol. 181, pp. 65–79 (2015)Google Scholar
  38. 38.
    Visser, E.: Stratego: a language for program transformation based on rewriting strategies system description of Stratego 0.5. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 357–361. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    Wang, L., Du, F., Dai, H.P., Sun, Y.X.: Random pseudofractal scale-free networks with small-world effect. Eur. Phys. J. B - Condens. Matter Complex Syst. 53(3), 361–366 (2006)CrossRefzbMATHGoogle Scholar
  40. 40.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. 99(9), 5766–5771 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  42. 42.
    Wonyeol, L., Jinha, K., Hwanjo, Y.: CT-IC: Continuously activated and time-restricted independent cascade model for viral marketing. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 960–965 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maribel Fernández
    • 1
  • Hélène Kirchner
    • 2
  • Bruno Pinaud
    • 3
  • Jason Vallet
    • 3
  1. 1.King’s College LondonLondonUK
  2. 2.InriaRocquencourtFrance
  3. 3.CNRS UMR5800 LaBRIUniversity of BordeauxBordeauxFrance

Personalised recommendations