Advertisement

A Study on Security and Surveillance System Using Gait Recognition

  • M. Sivarathinabala
  • S. Abirami
  • R. Baskaran
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 660)

Abstract

Security is an important aspect and international attention in smart environments. The surveillance cameras are deployed in all commercial and public places in order to improve the security against terrorism activities. Nowadays, more and more government and industry resources are involved in the researches of security systems, especially in multimedia security, i.e., to enforce security measures, from the images and videos taken from suspicious environment. Therefore, there exists a need to ensure the originality and authenticity of multimedia data as well as to extract intelligent information from enormous images/video streams taken from suspicious environments to build stronger security systems. In this scenario, person identification plays a major role in security systems from the footages of suspicious environments. Without any human assistance, video analyst can identify the person from a large number of videos.

Keywords

Person identification Gait recognition Security Surveillance videos 

References

  1. 1.
    Wang J, She M, Nahavandi S, Kouzani A (2010) A review of vision-based gait recognition methods for human identification. In: International conference on digital image computing: techniques and applications (DICTA), pp 320–327Google Scholar
  2. 2.
    Yun J (2011) User identification using gait patterns on UbiFloorII. Sensors 11:2611–2639. doi: 10.3390/s110302611 CrossRefGoogle Scholar
  3. 3.
    Zheng S, Huang K, Tan T, Tao D (2012) A cascade fusion scheme for gait and cumulative foot pressure image recognition. Pattern Recognit 45:3603–3610CrossRefGoogle Scholar
  4. 4.
    Arora P, Srivastava S (2015) Gait recognition using gait Gaussian image. In: 2nd international conference on signal processing and integrated networks (SPIN), pp 791–794Google Scholar
  5. 5.
    Mohammed S, Saméb A, Oukhellou L, Kong K, Huoa W, Amirat Y (2016) Recognition of gait cycle phases using wearable sensors. Robot Auton Syst 75:50–59CrossRefGoogle Scholar
  6. 6.
    Yogarajah P, Chaurasia P, Condell J, Prasad G (2015) Enhancing gait based person identification using joint sparsity model and ‘1-norm minimization. Inf Sci 308:3–22CrossRefGoogle Scholar
  7. 7.
    Xing X, Wang K, Yan T, Lv Z (2016) Complete canonical correlation analysis with application to multi-view gait recognition. Pattern Recognit 50:107–117CrossRefGoogle Scholar
  8. 8.
    Muramatsu D, Shiraishi A, Makihara Y, Uddin MZ, Yagi Y (2015) Gait-based person recognition using arbitrary view transformation model. IEEE Trans Image Process 24:1MathSciNetCrossRefGoogle Scholar
  9. 9.
    Choudhury SD, Tjahjadi T (2015) Robust view-invariant multi scale gait recognition. Pattern Recognit 48:798–811CrossRefGoogle Scholar
  10. 10.
    CC Charalambous, AA Bharath (2015) Viewing angle effect on gait recognition using joint kinematics. In: Sixth international conference on imaging for crime prevention and detection (ICDP-15), pp 1–6Google Scholar
  11. 11.
    Zheng S, Zhang J, Huang K, He R, Tan T (2012) Robust view transformation model for gait recognition 7(2):22–26Google Scholar
  12. 12.
    Burhan IM, Nordin MJ (2015) Multi-view gait recognition using Enhanced gait energy image and radon transform techniques. Asian J Appl Sci 8(2):138–148CrossRefGoogle Scholar
  13. 13.
    Zhao X, Jiang Y, Stathaki T, Zhang H (2016) Gait recognition method for arbitrary straight walking paths using appearance conversion machine. Neurocomputing 173:530–540CrossRefGoogle Scholar
  14. 14.
    Nandy A, Chakraborty P (2015) A new paradigm of human gait analysis with kinect. In: IEEE eight international conference on contemporary computing, pp 443–448Google Scholar
  15. 15.
    Prakash C, Mittal A, Kumar R, Mittal N (2015) Identification of spatio-temporal and kinematics parameters for 2-D optical gait analysis system using passive markers. In: IEEE international conference on computer engineering and applications, pp 143–149Google Scholar
  16. 16.
    Perez-Sala X, Escalera S, Angulo C, Gonzàlez J (2014) A survey on model based approaches for 2D and 3D visual human pose recovery. Sensors 14:4189–4210. doi: 10.3390/s140304189 CrossRefGoogle Scholar
  17. 17.
    Tafazzoli F, Safabakhsh R (2010) Model-based human gait recognition using leg and arm movements. Eng Appl Artif Intell 23(2010):1237–1246CrossRefGoogle Scholar
  18. 18.
    Lu W, Zong W, Xing W, Bao E (2014) Gait recognition based on joint distribution of motion angles. J Vis Lang Comput 25(6):754–763CrossRefGoogle Scholar
  19. 19.
    Yam CY, Nixon MS, Carter JN (2004) Automated person recognition by walking and running via model-based approaches. Pattern Recognit 37:1057–1072CrossRefGoogle Scholar
  20. 20.
    Ioannidis D, Tzovaras D, Damousis IG, Argyropoulos S, Moustakas K (2007) Gait recognition using compact feature extraction transforms and depth information. IEEE Trans Inf Forensics Secur 2(3):623CrossRefGoogle Scholar
  21. 21.
    Zhang R, Vogler C, Metaxas D (2004) Human gait recognition. In: Proceedings of conference on computer vision and pattern recognition workshop. doi: 10.1109/CVPR.2004.87
  22. 22.
    Cunado D, Nixon MS, Carter JN (2003) Automatic extraction and description of human gait models for recognition purposes. Comput Vis Image Underst 90(1):1–41CrossRefGoogle Scholar
  23. 23.
    Zhang R, Vogler C, Metaxas D (2007) Human gait recognition at sagittal plane. Image Vis Comput 25:321–330CrossRefGoogle Scholar
  24. 24.
    Bouchrika I (2015) Parametric elliptic Fourier descriptors for automated extraction of gait features for people identification. In: 12th international symposium on programming and systems (ISPS), pp 1–7Google Scholar
  25. 25.
    Vera-Rodrigueza R, Fierreza J, Masonb JSD, Ortega-Garciaa J (2013) A novel approach of gait recognition through fusion with footstep information. In: IEEE international conference on biometrics, pp 1–6Google Scholar
  26. 26.
    Gafurov D, Snekkenes E (2009) Gait recognition using wearable motion recording sensors. EURASIP J Adv Signal Process Article ID 415817. doi: 10.1155/2009/415817
  27. 27.
    Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors 12:2255–2283. doi: 10.3390/s120202255 CrossRefGoogle Scholar
  28. 28.
    Ngo TT, Makihara Y, Nagahara H, Mukaigawa Y, Yagi Y (2014) The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recognit 47:228–237CrossRefGoogle Scholar
  29. 29.
    Sprager S, Juric MB (2015) Inertial sensor-based gait recognition: a review. Sensors 15:22089–22127. doi: 10.3390/s150922089 CrossRefGoogle Scholar
  30. 30.
    Wu F, Zhao H, Zhao Y, Zhong H (2015) Development of a wearable-sensor-based fall detection system. Int J Telemed Appl, Article ID 576364. doi: 10.1155/2015/576364
  31. 31.
    Yan Z, Wang Z, Xie H (2008) The application of mutual information-based feature selection and fuzzy LS-SVM-based classifier in motion classification. Comput Methods Programs Biomed 9:275–284CrossRefGoogle Scholar
  32. 32.
    Moustakas K, Tzovaras D, Stavropoulos G (2010) Gait recognition using geometric features and soft biometrics. IEEE Signal Process Lett 17(4):367–370CrossRefGoogle Scholar
  33. 33.
    Lam THW, Lee RST, Zhang D (2007) Human gait recognition by the fusion of motion and static spatio-temporal templates. Pattern Recognit 40:2563–2573MATHCrossRefGoogle Scholar
  34. 34.
    Tafazzoli F, Bebis G, Louis S, Hussain M (2015) Genetic feature selection for gait recognition. J Electron Imaging 24(1):013036. doi: 10.1117/1.JEI.24.1.013036 CrossRefGoogle Scholar
  35. 35.
    Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14(2):201–211CrossRefGoogle Scholar
  36. 36.
    Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. In: IEEE conference on face and gesture recognition, pp 155–161Google Scholar
  37. 37.
    Begg R, Kamruzzaman J (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J Biomech 38(3):401–408CrossRefGoogle Scholar
  38. 38.
    Xiao F, Hua P, Jin L, Bin Z (2010) Human gait recognition based on skeletons. In: International conference on educational and information technology (ICEIT 2010), pp 1–5Google Scholar
  39. 39.
    Luo J, Zhang J, Zi C, Niu Y, Tian H, Xiu C (2015) Gait recognition using GEI and AFDEI. Int J Opt Article ID 763908Google Scholar
  40. 40.
    Choudhury SD, Tjahjadi T (2012) Silhouette-based gait recognition using procrustes shape analysis and elliptic Fourier descriptors. Pattern Recogn 45:3414–3426CrossRefGoogle Scholar
  41. 41.
    BenAbdelkader C, Cutler R, Davis L (2004) Gait recognition using image self-similarity. EURASIP J Appl Signal Process 4:572–585CrossRefGoogle Scholar
  42. 42.
    Choudhury SD, Tjahjadi T (2013) Gait recognition based on shape and motion analysis of silhouette contours. Comput Vis Image Underst 117(12):1770–1785CrossRefGoogle Scholar
  43. 43.
    Sivapalan S, Chen D, Denman S, Sridharan S, Fookes C (2011) Gait energy volumes and frontal gait recognition using depth images. In: IEEE international joint conference on biometrics, pp 1–6Google Scholar
  44. 44.
    Kovač J, Peer P (2014) Human skeleton model based dynamic features for walking speed invariant gait recognition. Math Probl Eng Article ID 484320Google Scholar
  45. 45.
    Lu H, Plataniotis KN, Venetsanopoulos AN (2008) A full-body layered deformable model for automatic model-based gait recognition. EURASIP J Adv Signal Process Article ID 261317. doi: 10.1155/2008/261317
  46. 46.
    Kusakunniran W (2014) Attribute-based learning for gait recognition using spatio-temporal interest points. Image Vis Comput 32(12):1117–1126CrossRefGoogle Scholar
  47. 47.
    Middleton L, Buss AA, Bazin AA, Nixon MS (2005) A floor sensor system for gait recognition. Fourth IEEE workshop on automatic identification advanced technologies, pp 171–176Google Scholar
  48. 48.
    Tafazzoli F, Bebis G, Louis S, Hussain M (2014) Improving human gait recognition using feature selection. In: Bebis G et al (eds) ISVC 2014, part II, LNCS vol 8888, pp 830–840Google Scholar
  49. 49.
    Jiwen Lu, Zhang E (2007) Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognit Lett 28:2401–2411CrossRefGoogle Scholar
  50. 50.
    Narasimhulu GV, Jilani SAK (2012) Fuzzy principal component analysis based gait recognition. Int J Comput Sci Inf Technol 3(3):4015–4020Google Scholar
  51. 51.
    Das SR, Wilson RC, Lazarewicz MT, Finkel LH (2006) Two-stage PCA extracts spatiotemporal features for gait recognition. J Multimed 1(5):9–17Google Scholar
  52. 52.
    Luo C, Xu W, Zhu C (2015) Robust gait recognition based on partitioning and canonical correlation analysis. IEEEGoogle Scholar
  53. 53.
    D Skoda, P Kutilek, V Socha, J Schlenker, A Ste, J Kalina (2015) The estimation of the joint angles of upper limb during walking using fuzzy logic system and relation maps. In: IEEE 13th international symposium on applied machine intelligence and informaticsGoogle Scholar
  54. 54.
    Fazli S, Askarifar H, Tavassoli MJ (2011) Gait recognition using SVM and LDA. In: International conference on advances in computing, control, and telecommunication technologies, pp 106–109Google Scholar
  55. 55.
    Libin DU, Wenxin SHAO (2011) An algorithm of gait recognition based on support vector machine. J Comput Inf Syst 7(13):4710–4715Google Scholar
  56. 56.
    Taborri J, Rossi S, Palermo E, Patanè F, Cappa P (2014) A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network. Sensors 14:16212–16234. doi: 10.3390/s140916212 CrossRefGoogle Scholar
  57. 57.
    Chen C, Liang J, Zhao H, Hu H, Tian J (2009) Factorial HMM and parallel HMM for gait recognition. IEEE Trans Syst Man Cybern Part C Appl Rev 39(1):114–123Google Scholar
  58. 58.
    Hai HX, Thuc HLU (2015) Cyclic HMM-based method for pathological gait recognition from side view gait video. Int J Adv Res Comput Eng Technol 4(5):2171–2176Google Scholar
  59. 59.
    Kale A, Rajagopalan AN, Cuntoor N, Krüger V (2002) Gait-based recognition of humans using continuous HMMs. In: Fifth IEEE international conference on automatic face and gesture recognition, pp 336–341Google Scholar
  60. 60.
    Zeng W, Wang C (2016) View-invariant gait recognition via deterministic learning. Neurocomputing 175:324–335CrossRefGoogle Scholar
  61. 61.
    Huang S, Elgammal A, Lu J, Yang D (2015) Cross-speed gait recognition using speed-invariant gait templates and globality-locality preserving projections. IEEE Trans Inf Forensics Secur 10(10):2071CrossRefGoogle Scholar
  62. 62.
    Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Trans Image Process 16(3):731–740MathSciNetCrossRefGoogle Scholar
  63. 63.
    Okumura M, Iwama H, Makihara Y, Yagi Y (2010) Performance evaluation of vision-based gait recognition using a very large-scale gait database. In: Proceedings of the fourth IEEE international conference on biometrics: theory applications and systems (BTAS), pp 1–6. doi: 10.1109/BTAS.2010.5634525
  64. 64.
    Sarkar S, Jonathon Phillips P, Liu Z, Robledo I, Grother P, Bowyer KW (2005) The human ID gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162–177CrossRefGoogle Scholar
  65. 65.
    Hofmann M, Sural S, Rigoll G (2011) Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In: 19th international conference on computer graphics, visualization and computer vision, pp 99–104Google Scholar
  66. 66.
    Gross R, Shi J (2001) The CMU motion of body (MoBo) database. Tech report CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon UniversityGoogle Scholar
  67. 67.
  68. 68.
    Ran Y, Zheng Q, Chellappa R, Thomas M (2010) Applications of a simple characterization of human gait in surveillance. IEEE Trans Syst Man Cybern Part B Cybern 40(4):1009–1020Google Scholar
  69. 69.
    Dey N, Samanta S, Yang XS, Das A, Chaudhuri SS (2013) Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search. Int J Bio Inspir Comput 5(5):315–326CrossRefGoogle Scholar
  70. 70.
    Dey N, Mukhopadhyay S, Das A, Chaudhuri SS (2012) Analysis of P-QRS-T components modified by blind watermarking technique within the electrocardiogram signal for authentication in wireless telecardiology using DWT. Int J Image Graph Signal Process 4(7):33CrossRefGoogle Scholar
  71. 71.
    Dey N, Pal M, Das A (2012) A session based watermarking technique within the NROI of retinal fundus images for authentication using DWT, spread spectrum and Harris corner detection. Int J Mod Eng Res 2(3):749–757Google Scholar
  72. 72.
    Pal AK, Das P, Dey N (2013) Odd–even embedding scheme based modified reversible watermarking technique using Blueprint. arXiv preprint arXiv:1303.5972
  73. 73.
    Dey N, Dey M, Mahata SK, Das A, Chaudhuri SS (2015) Tamper detection of electrocardiographic signal using watermarked bio–hash code in wireless cardiology. Int J Signal Imaging Syst Eng 8(1–2):46–58CrossRefGoogle Scholar
  74. 74.
    Acharjee S, Chakraborty S, Samanta S, Azar AT, Hassanien AE, Dey N (2014) Highly secured multilayered motion vector watermarking. In: Advanced machine learning technologies and applications. Springer International Publishing, pp 121–134Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Information Science and TechnologyAnna University, ChennaiChennaiIndia
  2. 2.Department of Computer Science and EngineeringAnna University, ChennaiChennaiIndia

Personalised recommendations