Pre-clinical and Clinical Management of Osteochondral Lesions

  • Sandra Pina
  • Viviana Ribeiro
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

The majority of osteochondral (OC) lesions occur after injury or trauma of both bone and the overlying cartilage, and symptoms are pain and disability, leading to the risk of inducing osteoarthritis. These lesions are currently repaired by non-surgical and surgical methods or by advanced tissue engineering strategies, which require a proof of efficacy and safety for regulatory approval for human application. Pre-clinical studies using animal models have been the support of OC repair and regeneration with successful clinical outcomes. Small animal models as mice and rabbits, and large animal models as sheep, goats and horses, have been most commonly used according with the outcome goals. Small animals are recommended as a proof of concept, while large animals are endorsed for truly translational research in order to get the regulatory approval for clinical use in humans. An up-to-date of the in vivo studies using different animal models and ongoing clinical trials for the repair and regeneration of OC lesions are presented. Commercialised products for OC repair are also indicated.

Notes

Acknowledgments

The research leading to this work has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2—NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) and FSE/POCH (Fundo Social Europeu através do Programa Operacional do Capital Humano), PD/59/2013, for the project PEst-C/SAU/LA0026/201, for the fellowship grants of  Sandra Pina (SFRH/BPD/108763/2015) and Viviana Ribeiro (PD/BD/113806/2015), and for the distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012).

References

  1. 1.
    Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495. doi:10.1016/j.bioeng.2007.07.014 CrossRefGoogle Scholar
  2. 2.
    Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sport Traumatol Arthrosc 20(6):1182–1191. doi:10.1007/s00167-011-1655-1 CrossRefGoogle Scholar
  3. 3.
    Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sport Med 24(1):1–12. doi:10.1016/j.csm.2004.08.007 CrossRefGoogle Scholar
  4. 4.
    Liu M, Yu X, Huang FG, Cen SQ, Zhong G, Xiang Z (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36(11):868–873. doi:10.3928/01477447-20131021-10 CrossRefGoogle Scholar
  5. 5.
    Chu CR, Coutts RD, Yoshioka M, Harwood FL, Monosov AZ, Amiel D (1995) Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res 29(9):1147–1154CrossRefGoogle Scholar
  6. 6.
    Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751CrossRefGoogle Scholar
  7. 7.
    Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB, Wang LY, Ji PH, Oliveira JM, Oliveira JT (2010) Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res Part A 95(2):465–475CrossRefGoogle Scholar
  8. 8.
    Yan L-P, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301CrossRefGoogle Scholar
  9. 9.
    Shimomura K, Moriguchi Y, Murawski CD, Yoshikawa H, Nakamura N (2014) Osteochondral tissue engineering with biphasic scaffold: current strategies and techniques. Tissue Eng Part B Rev 20(5):468–476CrossRefGoogle Scholar
  10. 10.
    Moyer R, Ratneswaran A, Beier F, Birmingham T (2014) Osteoarthritis year in review 2014: mechanics–basic and clinical studies in osteoarthritis. Osteoarth Cartil 22(12):1989–2002CrossRefGoogle Scholar
  11. 11.
    Csaki C, Schneider P, Shakibaei M (2008) Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat-Anatomischer Anzeiger 190(5):395–412CrossRefGoogle Scholar
  12. 12.
    Zhang W, Moskowitz R, Nuki G, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2007) OARSI recommendations for the management of hip and knee osteoarthritis. Part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarth Cartil 15(9):981–1000CrossRefGoogle Scholar
  13. 13.
    Zhang W, Moskowitz R, Nuki G, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2008) OARSI recommendations for the management of hip and knee osteoarthritis. Part II: OARSI evidence-based, expert consensus guidelines. Osteoarth Cartil 16(2):137–162CrossRefGoogle Scholar
  14. 14.
    Zhang W, Nuki G, Moskowitz R, Abramson S, Altman R, Arden N, Bierma-Zeinstra S, Brandt K, Croft P, Doherty M (2010) OARSI recommendations for the management of hip and knee osteoarthritis. Part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarth Cartil 18(4):476–499CrossRefGoogle Scholar
  15. 15.
    Redman S, Oldfield S, Archer C (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9(23–32):23–32Google Scholar
  16. 16.
    Shimomura K, Ando W, Tateishi K, Nansai R, Fujie H, Hart DA, Kohda H, Kita K, Kanamoto T, Mae T (2010) The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials 31(31):8004–8011CrossRefGoogle Scholar
  17. 17.
    Xing L, Jiang Y, Gui J, Lu Y, Gao F, Xu Y, Xu Y (2013) Microfracture combined with osteochondral paste implantation was more effective than microfracture alone for full-thickness cartilage repair. Knee Surg Sports Traumatol Arthrosc 21(8):1770–1776CrossRefGoogle Scholar
  18. 18.
    Kim YS, Park EH, Lee HJ, Koh YG, Lee JW (2012) Clinical comparison of the osteochondral autograft transfer system and subchondral drilling in osteochondral defects of the first metatarsal head. Am J Sports Med 40(8):1824–1833CrossRefGoogle Scholar
  19. 19.
    De Girolamo L, Quaglia A, Bait C, Cervellin M, Prospero E, Volpi P (2012) Modified autologous matrix-induced chondrogenesis (AMIC) for the treatment of a large osteochondral defect in a varus knee: a case report. Knee Surg Sports Traumatol Arthrosc 20(11):2287–2290CrossRefGoogle Scholar
  20. 20.
    Miska M, Wiewiorski M, Valderrabano V (2012) Reconstruction of a large osteochondral lesion of the distal tibia with an iliac crest graft and autologous matrix-induced chondrogenesis (AMIC): a case report. J Foot Ankle Surg 51(5):680–683CrossRefGoogle Scholar
  21. 21.
    Christensen BB, Foldager CB, Hansen OM, Kristiansen AA, Le DQS, Nielsen AD, Nygaard JV, Bünger CE, Lind M (2012) A novel nano-structured porous polycaprolactone scaffold improves hyaline cartilage repair in a rabbit model compared to a collagen type I/III scaffold: in vitro and in vivo studies. Knee Surg Sports Traumatol Arthrosc 20(6):1192–1204CrossRefGoogle Scholar
  22. 22.
    Jackson RW, Dieterichs C (2003) The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration. Arthrosc J Arthrosc Relat Surg 19(1):13–20CrossRefGoogle Scholar
  23. 23.
    Shannon F, Devitt A, Poynton A, Fitzpatrick P, Walsh M (2001) Short-term benefit of arthroscopic washout in degenerative arthritis of the knee. Int Orthop 25(4):242–245CrossRefGoogle Scholar
  24. 24.
    Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267CrossRefGoogle Scholar
  25. 25.
    Minas T, Peterson L (2012) Autologous chondrocyte transplantation. Oper Tech Sports Med 20(1):72–86CrossRefGoogle Scholar
  26. 26.
    Getgood AM, Kew SJ, Brooks R, Aberman H, Simon T, Lynn AK, Rushton N (2012) Evaluation of early-stage osteochondral defect repair using a biphasic scaffold based on a collagen–glycosaminoglycan biopolymer in a caprine model. Knee 19(4):422–430CrossRefGoogle Scholar
  27. 27.
    Siclari A, Mascaro G, Gentili C, Cancedda R, Boux E (2012) A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin Orthop Relat Res® 470(3):910–919CrossRefGoogle Scholar
  28. 28.
    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi:10.1016/j.jbiomech.2006.03.008 CrossRefGoogle Scholar
  29. 29.
    Sotoudeh A, Jahanshahi A, Takhtfooladi MA, Bazazan A, Ganjali A, Harati MP (2013) Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit. Acta Cir Bras 28(5):340–345CrossRefGoogle Scholar
  30. 30.
    Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196CrossRefGoogle Scholar
  31. 31.
    Nejadnik H, Daldrup-Link HE (2012) Engineering stem cells for treatment of osteochondral defects. Skeletal Radiol 41(1):1–4CrossRefGoogle Scholar
  32. 32.
    Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73CrossRefGoogle Scholar
  33. 33.
    Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Controll Release 134(2):81–90CrossRefGoogle Scholar
  34. 34.
    Im GI, Lee JH (2010) Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits. J Biomed Mater Res B Appl Biomater 92(2):552–560Google Scholar
  35. 35.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855CrossRefGoogle Scholar
  36. 36.
    Schütz K, Despang F, Lode A, Gelinsky M (2016) Cell‐laden biphasic scaffolds with anisotropic structure for the regeneration of osteochondral tissue. J Tissue Eng Regen Med 10(5):404–417Google Scholar
  37. 37.
    Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92A(3):1078–1093. doi:10.1002/Jbm.A.32387 Google Scholar
  38. 38.
    Grayson WL, Chao PHG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189. doi:10.1016/j.tibtech.2007.12.009 CrossRefGoogle Scholar
  39. 39.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: Current strategies and challenges. Biotechnol Adv 31(5):706–721. doi:10.1016/j.biotechadv.2012.11.004 CrossRefGoogle Scholar
  40. 40.
    Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270. doi:10.1111/j.1582-4934.2012.01571.x CrossRefGoogle Scholar
  41. 41.
    Goldstein SA (2002) Tissue engineering—functional assessment and clinical outcome. Ann N Y Acad Sci 961:183–192CrossRefGoogle Scholar
  42. 42.
    Sosio C, Di Giancamillo A, Deponti D, Gervaso F, Scalera F, Melato M, Campagnol M, Boschetti F, Nonis A, Domeneghini C, Sannino A, Peretti GM (2015) Osteochondral repair by a novel interconnecting collagen-hydroxyapatite substitute: a large-animal study. (1937-335X (Electronic))Google Scholar
  43. 43.
    J-P Seo, Tanabe T, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, Sasaki N (2013) Effects of bilayer gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, chondrocytes, bone morphogenetic protein-2, and platelet rich plasma on osteochondral defects of the talus in horses. Res Vet Sci 95(3):1210–1216. doi:10.1016/j.rvsc.2013.08.016 CrossRefGoogle Scholar
  44. 44.
    Jeon JE, Vaquette C, Theodoropoulos C, Klein TJ, Hutmacher DW (2014) Multiphasic construct studied in an ectopic osteochondral defect model, vol 11. vol 95. doi:10.1098/rsif.2014.0184
  45. 45.
    Dresing I, Zeiter S, Auer J, Alini M, Eglin D (2014) Evaluation of a press-fit osteochondral poly(ester-urethane) scaffold in a rabbit defect model. J Mater Sci Mater Med 25(7):1691–1700. doi:10.1007/s10856-014-5192-6 CrossRefGoogle Scholar
  46. 46.
    Jang KM, Lee JH, Park CM, Song HR, Wang JH (2014) Xenotransplantation of human mesenchymal stem cells for repair of osteochondral defects in rabbits using osteochondral biphasic composite constructs. Knee Surg Sport Traumatol Arthrosc 22(6):1434–1444. doi:10.1007/s00167-013-2426-y CrossRefGoogle Scholar
  47. 47.
    Zhang WJ, Lian Q, Li DC, Wang KZ, Hao DJ, Bian WG, He JK, Jin ZM (2014) Cartilage repair and subchondral bone migration using 3D printing osteochondral composites: a one-year-period study in rabbit trochlea. Biomed Res Int. doi:10.1155/2014/746138 Google Scholar
  48. 48.
    Zhang SF, Chen LK, Jiang YZ, Cai YZ, Xu GW, Tong T, Zhang W, Wang LL, Ji JF, Shi PH, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247. doi:10.1016/j.actbio.2013.04.003 CrossRefGoogle Scholar
  49. 49.
    Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Control Release 168(2):166–178. doi:10.1016/j.jconrel.2013.03.013 CrossRefGoogle Scholar
  50. 50.
    Zhang W, Chen JL, Tao JD, Hu CC, Chen LK, Zhao HS, Xu GW, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057. doi:10.1016/j.biomaterials.2013.04.055 CrossRefGoogle Scholar
  51. 51.
    Chen JN, Chen HA, Li P, Diao HJ, Zhu SY, Dong L, Wang R, Guo T, Zhao JN, Zhang JF (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805. doi:10.1016/j.biomaterials.2011.03.041 CrossRefGoogle Scholar
  52. 52.
    Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N (2015) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. (1433-7347 (Electronic))Google Scholar
  53. 53.
    Fonseca C, Caminal M, Peris D, Barrachina J, Fabregas PJ, Garcia F, Cairo JJ, Godia F, Pla A, Vives J (2014) An arthroscopic approach for the treatment of osteochondral focal defects with cell-free and cell-loaded PLGA scaffolds in sheep. Cytotechnology 66(2):345–354. doi:10.1007/s10616-013-9581-3 CrossRefGoogle Scholar
  54. 54.
    Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192CrossRefGoogle Scholar
  55. 55.
    Bernstein A, Niemeyer P, Salzmann G, Südkamp NP, Hube R, Klehm J, Menzel M, von Eisenhart-Rothe R, Bohner M, Görz L, Mayr HO (2013) Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomater 9(7):7490–7505. doi:10.1016/j.actbio.2013.03.021 CrossRefGoogle Scholar
  56. 56.
    Gotterbarm T, Breusch SJ, Jung M, Streich N, Wiltfang J, Berardi Vilei S, Richter W, Nitsche T (2014) Complete subchondral bone defect regeneration with a tricalcium phosphate collagen implant and osteoinductive growth factors: a randomized controlled study in Gottingen minipigs. (1552-4981 (Electronic))Google Scholar
  57. 57.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701. doi:10.1016/j.injury.2009.11.014 CrossRefGoogle Scholar
  58. 58.
    Williams RJ, Gamradt SC (2008) Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect 57:563–571Google Scholar
  59. 59.
    Melton JTK, Wilson AJ, Chapman-Sheath P, Cossey AJ (2010) TruFit CB® bone plug: chondral repair, scaffold design, surgical technique and early experiences. Expert Rev Med Devices 7(3):333–341. doi:10.1586/erd.10.15 CrossRefGoogle Scholar
  60. 60.
    Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41:693–701CrossRefGoogle Scholar
  61. 61.
    Ostrovsky G (2010) Bioresorbable, acellular, biphasic scaffold gets EU approval for knee cartilage repair. medGadget. Accessed 25 Nov 2014Google Scholar
  62. 62.
    Gomoll AH (2013) Osteochondral allograft transplantation using the chondrofix implant. Oper Tech Sports Med 21(2):90–94. doi:10.1053/j.otsm.2013.03.002 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sandra Pina
    • 1
    • 2
  • Viviana Ribeiro
    • 1
    • 2
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoBarco GMRPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations