Fundamentals on Osteochondral Tissue Engineering

  • Viviana Ribeiro
  • Sandra Pina
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

The repair and regeneration of osteochondral (OC) defects has been increasing owing the high number of diseases, trauma and injuries. Although current clinical options are effective for the treatment of the OC lesions, new therapeutic options are necessary for the complete regeneration of the damaged articular cartilage which has a limited healing capacity. OC tissue engineering has been proposing advanced tools and technologies involving structured scaffolds, bioactive molecules, and cells for the repair and regeneration of the bone and cartilage tissues, as well as their interface. Multi-phased or stratified scaffolds with distinct bone and cartilage sections have been designed for OC repair. Diverse forms, as porous scaffolds, fibres, and hydrogels are the most commonly strategies used for OC tissue engineering. This chapter presents the current treatment and biomimetic strategies for OC tissue engineering. Structure and properties of the OC tissue are also briefly described.

Notes

Acknowledgments

The research leading to this work has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant Agreement No REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2—NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) and FSE/POCH (Fundo Social Europeu através do Programa Operacional do Capital Humano), PD/59/2013, for the project PEst-C/SAU/LA0026/201, for the fellowship grants of Sandra Pina (SFRH/BPD/108763/2015) and Viviana Ribeiro (PD/BD/113806/2015), and for the distinction attributed to J.M. Oliveira under the Investigator FCT program (IF/00423/2012).

References

  1. 1.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721CrossRefGoogle Scholar
  2. 2.
    Xing LZ, Jiang YQ, Gui JC, Lu YM, Gao F, Xu Y, Xu Y (2013) Microfracture combined with osteochondral paste implantation was more effective than microfracture alone for full-thickness cartilage repair. Knee Surg Sport Traumatol Arthrosc 21(8):1770–1776CrossRefGoogle Scholar
  3. 3.
    Kim YS, Park EH, Lee HJ, Koh YG, Lee JW (2012) Clinical comparison of the osteochondral autograft transfer system and subchondral drilling in osteochondral defects of the first metatarsal head. Am J Sport Med 40(8):1824–1833CrossRefGoogle Scholar
  4. 4.
    de Girolamo L, Quaglia A, Bait C, Cervellin M, Prospero E, Volpi P (2012) Modified autologous matrix-induced chondrogenesis (AMIC) for the treatment of a large osteochondral defect in a varus knee: a case report. Knee Surg Sport Traumatol Arthrosc 20(11):2287–2290CrossRefGoogle Scholar
  5. 5.
    Miska M, Wiewiorski M, Valderrabano V (2012) Reconstruction of a large osteochondral lesion of the distal tibia with an iliac crest graft and autologous matrix-induced chondrogenesis (AMIC): a case report. J Foot Ankle Surg 51(5):680–683CrossRefGoogle Scholar
  6. 6.
    Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440CrossRefGoogle Scholar
  7. 7.
    Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92A(3):1078–1093Google Scholar
  8. 8.
    Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16(10):2247–2270CrossRefGoogle Scholar
  9. 9.
    Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interface. Tissue Eng Part B 15(2):127–141CrossRefGoogle Scholar
  10. 10.
    Shrivats AR, McDermott MC, Hollinger JO (2014) Bone tissue engineering: state of the union. Drug Discov Today 19(6):781–786CrossRefGoogle Scholar
  11. 11.
    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765CrossRefGoogle Scholar
  12. 12.
    Yan L, Oliveira J, Oliveira A, Reis R (2014) Silk fibroin/nano-CaP bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:245CrossRefGoogle Scholar
  13. 13.
    Mano J, Silva G, Azevedo H, Malafaya P, Sousa R, Silva S, Reis R (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030CrossRefGoogle Scholar
  14. 14.
    Bohner M (2000) Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury-Int J Care Injured 31:37–47CrossRefGoogle Scholar
  15. 15.
    Dorozhkin S (2009) Calcium orthophosphates in nature. Biol Med Mater 2:399–498Google Scholar
  16. 16.
    Verbruggen G, Wang J, Elewaut D, Veys EM (2004) Biology of articular cartilage. In: Proceedings of the 5th symposium of the international cartilage repair society—ICRS, pp 21–25Google Scholar
  17. 17.
    Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW (2007) Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 24(5):489–495CrossRefGoogle Scholar
  18. 18.
    Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage—a template for tissue repair. Clin Orthop Relat Res 391:S26–S33CrossRefGoogle Scholar
  19. 19.
    García-Carvajal ZY, Garciadiego-Cázares D, Parra-Cid C, Aguilar-Gaytán R, Velasquillo C, Ibarra C, Carmona JSC (2013) Cartilage tissue engineering: the role of extracellular matrix (ECM) and novel strategies. Regen Med Tissue Eng, 365–397. InTech, CroatiaGoogle Scholar
  20. 20.
    Athanasiou KA, Zhu CF, Wang X, Agrawal CM (2000) Effects of aging and dietary restriction on the structural integrity of rat articular cartilage. Ann Biomed Eng 28(2):143–149CrossRefGoogle Scholar
  21. 21.
    Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sport Med 24(1):1CrossRefGoogle Scholar
  22. 22.
    Khalafi A, Schmid TM, Neu C, Reddi AH (2007) Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res 25(3):293–303CrossRefGoogle Scholar
  23. 23.
    Neu CP, Khalafi A, Komvopoulos K, Schmid TM, Reddi AH (2007) Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling. Arthritis Rheum 56(11):3706–3714CrossRefGoogle Scholar
  24. 24.
    Korhonen RK, Julkunen P, Wilson W, Herzog W (2008) Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. J Biomech Eng-T ASME 130(2):021003Google Scholar
  25. 25.
    Huber M, Trattnig S, Lintner F (2000) Anatomy, biochemistry, and physiology of articular cartilage. Invest Radiol 35(10):573–580CrossRefGoogle Scholar
  26. 26.
    Lyons TJ, Stoddart RW, McClure SF, McClure J (2005) The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol 36(3):207–215CrossRefGoogle Scholar
  27. 27.
    Eyre D (2002) Collagen of articular cartilage. Arthritis Res 4(1):30–35Google Scholar
  28. 28.
    Hyc A, Osiecka-Iwan A, Jozwiak J, Moskalewski S (2001) The morphology and selected biological properties of articular cartilage. Ortop Traumatol Rehabil 3(2):151–162Google Scholar
  29. 29.
    Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141(3):208–217CrossRefGoogle Scholar
  30. 30.
    Lu HH, Subramony SD, Boushell MK, Zhang XZ (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154CrossRefGoogle Scholar
  31. 31.
    Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sport Traumatol Arthrosc 18(4):419–433CrossRefGoogle Scholar
  32. 32.
    Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B-Rev 17(5):331–347CrossRefGoogle Scholar
  33. 33.
    Cordonnier T, Sohier J, Rosset P, Layrolle P (2011) Biomimetic materials for bone tissue engineering—state of the art and future trends. Adv Eng Mater 13(5):B135–B150CrossRefGoogle Scholar
  34. 34.
    Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: State of the art and future trends. Macromol Biosci 4(8):743–765CrossRefGoogle Scholar
  35. 35.
    Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260CrossRefGoogle Scholar
  36. 36.
    Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289(5484):1501–1504CrossRefGoogle Scholar
  37. 37.
    Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35(9):1301–1305CrossRefGoogle Scholar
  38. 38.
    Sommerfeldt DW, Rubin CT (2001) Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J 10:S86–S95CrossRefGoogle Scholar
  39. 39.
    Sundelacruz S, Kaplan DL (2009) Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 20(6):646–655. doi:10.1016/j.semcdb.2009.03.017 CrossRefGoogle Scholar
  40. 40.
    Kawcak CE, McIlwraith CW, Norrdin RW, Park RD, James SP (2001) The role of subchondral bone in joint disease: a review. Equine Vet J 33(2):120–126CrossRefGoogle Scholar
  41. 41.
    Mahmoudifar N, Doran PM (2005) Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors. Biomaterials 26(34):7012–7024CrossRefGoogle Scholar
  42. 42.
    Dahlin RL, Kinard LA, Lam J, Needham CJ, Lu S, Kasper FK, Mikos AG (2014) Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model. Biomaterials 35(26):7460–7469CrossRefGoogle Scholar
  43. 43.
    Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M (2014) Acellular matrix–based cartilage regeneration techniques for osteochondral repair. Oper Tech Orthop 24(1):14–18CrossRefGoogle Scholar
  44. 44.
    Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24):4739–4751CrossRefGoogle Scholar
  45. 45.
    Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarth Cartil 12:20–30Google Scholar
  46. 46.
    Moisio K, Eckstein F, Chmiel JS, Guermazi A, Prasad P, Almagor O, Song J, Dunlop D, Hudelmaier M, Kothari A, Sharma L (2009) Denuded subchondral bone and knee pain in persons with knee osteoarthritis. Arthritis Rheum 60(12):3703–3710CrossRefGoogle Scholar
  47. 47.
    Thorrez L, Shansky J, Wang L, Fast L, VandenDriessche T, Chuah M, Mooney D, Vandenburgh H (2008) Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials 29(1):75–84CrossRefGoogle Scholar
  48. 48.
    Hou Q, Grijpma D, Feijen J (2003) Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24:1937–1947CrossRefGoogle Scholar
  49. 49.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137CrossRefGoogle Scholar
  50. 50.
    Dehghani F, Annabi N (2011) Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol 22:661–666CrossRefGoogle Scholar
  51. 51.
    vande Witte P, Dijkstra P, vanden Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31CrossRefGoogle Scholar
  52. 52.
    Woodfield TBF, Guggenheim M, Von Rechenberg B, Riesle J, Van Blitterswijk CA, Wedler V (2009) Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif 42(4):485–497CrossRefGoogle Scholar
  53. 53.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRefGoogle Scholar
  54. 54.
    Kim K, Yeatts A, Dean D (2010) Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B Rev 16:523–539CrossRefGoogle Scholar
  55. 55.
    Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, Mano JF, Oliveira JM, Oliveira AL, Reis RL (2013) Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (Lond) 8(3):359–378CrossRefGoogle Scholar
  56. 56.
    Wang Y, Meng H, Yuan X, Peng J, Guo Q, Lu S, Wang A (2014) Fabrication and in vitro evaluation of an articular cartilage extracellular matrix-hydroxyapatite bilayered scaffold with low permeability for interface tissue engineering. Biomed Eng Online 13:80CrossRefGoogle Scholar
  57. 57.
    Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR (2014) Bioglass((R))/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J Biomed Mater Res A 102(12):4510–4518Google Scholar
  58. 58.
    Harley B, Lynn A, Wissner-Gross Z, Bonfield W, Yannas I, Gibson L (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92:1078–1093Google Scholar
  59. 59.
    Chen J, Chen H, Li P, Diao H, Zhu S, Dong L, Wang R, Guo T, Zhao J, Zhang J (2011) Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials 32(21):4793–4805CrossRefGoogle Scholar
  60. 60.
    Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855CrossRefGoogle Scholar
  61. 61.
    Ding X, Zhu M, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L, Li X, Kong D, Ma X, Yang Q (2014) Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces 6(19):16696–16705CrossRefGoogle Scholar
  62. 62.
    Ng R, Zang R, Yang K, Liu N, Yang S (2012) Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering. RSC Adv 2:10110–10124CrossRefGoogle Scholar
  63. 63.
    Hong J, Madihally S (2011) Next generation of electrosprayed fibers for tissue regeneration. Tissue Eng Part B Rev 17:125–142CrossRefGoogle Scholar
  64. 64.
    Yunos DM, Ahmad Z, Salih V, Boccaccini AR (2013) Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass(R)-derived foams. J Biomater Appl 27(5):537–551CrossRefGoogle Scholar
  65. 65.
    Zhang S, Chen L, Jiang Y, Cai Y, Xu G, Tong T, Zhang W, Wang L, Ji J, Shi P, Ouyang HW (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247CrossRefGoogle Scholar
  66. 66.
    Filová E, Rampichová M, Litvinec A, Držík M, Míčková A, Buzgo M, Košťáková E, Martinová L, Usvald D, Prosecká E, Uhlík J, Motlík J, Vajner L, Amler E (2013) A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm 447(1–2):139–149CrossRefGoogle Scholar
  67. 67.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329CrossRefGoogle Scholar
  68. 68.
    Annabi N, Nichol J, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16:371–383CrossRefGoogle Scholar
  69. 69.
    Pereira D, Canadas R, Silva-Correia J, Marques A, Reis R, Oliveira J (2014) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260CrossRefGoogle Scholar
  70. 70.
    Rodrigues MT, Lee SJ, Gomes ME, Reis RL, Atala A, Yoo JJ (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8(7):2795–2806CrossRefGoogle Scholar
  71. 71.
    Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y, Kasper FK, Mikos AG (2010) The effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931CrossRefGoogle Scholar
  72. 72.
    Kim K, Lam J, Lu S, Spicer PP, Lueckgen A, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2013) Osteochondral tissue regeneration using a bilayered composite hydrogel with modulating dual growth factor release kinetics in a rabbit model. J Controll Release 168(2):166–178CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Viviana Ribeiro
    • 1
    • 2
  • Sandra Pina
    • 1
    • 2
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations