Advances in Biomaterials for the Treatment of Articular Cartilage Defects

  • Cristiana Gonçalves
  • Hajer Radhouani
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

The management of cartilage defects is one of the most challenging problems for public and medical communities. The complete repairing of the damaged cartilage is a complex procedure, since articular cartilage is characterized by a poor vascularization (absence of blood vessels and nerve source), which limits the capacity to repair itself. Cartilage tissue engineering and regenerative medicine are relatively novel areas of research and may hold the key to the successful treatment of cartilage diseases and disorders. Materials such as natural and synthetic biomaterials have been explored to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. In this chapter, an overview is given of the natural and synthetic biomaterials used on cartilage repair, describing the procedures to obtain these biomaterials, their chemical structure, their modifications to enhance their properties, and also their medical applications.

References

  1. 1.
    Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q (2014) The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed Res Int 2014:648459. doi:10.1155/2014/648459 Google Scholar
  2. 2.
    Gaharwar AK, Schexnailder PJ, Schmidt G (2011) Nanocomposite polymer biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Taylor and Francis Group L (ed) Nanobiomaterials handbook. UK, p 20Google Scholar
  3. 3.
    Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57CrossRefGoogle Scholar
  4. 4.
    Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, Madry H, Mata A, Mauck RL, Semino CE, Stoddart MJ (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cells Mater 25:248–267Google Scholar
  5. 5.
    Khaled EG, Saleh M, Hindocha S, Griffin M, Khan WS (2011) Tissue engineering for bone production—stem cells, gene therapy and scaffolds. Open Orthop J 5(Suppl 2):289–295. doi:10.2174/1874325001105010289 CrossRefGoogle Scholar
  6. 6.
    Lee KB, Wang VT, Chan YH, Hui JH (2012) A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid–a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore 41(11):511–517Google Scholar
  7. 7.
    Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262. doi:10.1016/j.addr.2007.08.027 CrossRefGoogle Scholar
  8. 8.
    Ong KL, Lovald S, Black J (2015) Orthopaedic biomaterials in research and practice, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373. doi:10.3390/Ma2020353 CrossRefGoogle Scholar
  10. 10.
    Kon E, Verdonk P, Condello V, Delcogliano M, Dhollander A, Filardo G, Pignotti E, Marcacci M (2009) Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 37(Suppl 1):156S–166S. doi:10.1177/0363546509351649 CrossRefGoogle Scholar
  11. 11.
    Ige OO, Umoru LE, Aribo S (2012) Natural products: a minefield of biomaterials. ISRN Mater Sci 20:1–20Google Scholar
  12. 12.
    Doulabi AH, Mequanint K, Mohammadi H (2014) Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 7:5327–5355CrossRefGoogle Scholar
  13. 13.
    Gaharwar AK, Sant S, Hancock MJ, Hacking SA (2013) Nanocomposite polymer: biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Gaharwar AK, Sant S, Hancock MJ, Hacking SA (eds) Nanomaterials in tissue engineering: fabrication and applications. Woodhead Publishing, Cambridge, p 468CrossRefGoogle Scholar
  14. 14.
    Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine. INTECH Open Access Publisher. doi:10.5772/24118
  15. 15.
    Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440CrossRefGoogle Scholar
  16. 16.
    Bonzani IC, George JH, Stevens MM (2006) Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 10(6):568–575. doi:10.1016/j.cbpa.2006.09.009 CrossRefGoogle Scholar
  17. 17.
    Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, Guicheux J, Noel D (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329CrossRefGoogle Scholar
  18. 18.
    Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1–8Google Scholar
  19. 19.
    Hollinger JO (2011) An introduction to biomaterials, 2nd edn. The Biomedical Engineering Series. CRC Press, Boca RatonGoogle Scholar
  20. 20.
    Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923):59–63. doi:10.1126/science.1169494 CrossRefGoogle Scholar
  21. 21.
    Ou KL, Hosseinkhani H (2014) Development of 3D in vitro technology for medical applications. Int J Mol Sci 15(10):17938–17962. doi:10.3390/ijms151017938 CrossRefGoogle Scholar
  22. 22.
    Quereshi S, Mhaske A, Raut D, Singh R, Mani A, Patel J (2010) Extraction and partial characterization of collagen from different animal skins. Recent Res Sci Technol 2(9):28–31Google Scholar
  23. 23.
    Cheng W, Yan-hua R, Fang-gang N, Guo-an Z (2011) The content and ratio of type I and III collagen in skin differ with age and injury. Afr J Biotechnol 10(13):2524–2529Google Scholar
  24. 24.
    Misra A (2010) Parenteral delivery of peptides and proteins. In: Misra A (ed) Challenges in delivery of therapeutic genomics and proteomics. Elsevier, BurlingtonGoogle Scholar
  25. 25.
    Abedin MZ, Karim AA, Ahmed F, Latiff AA, Gan CY, Che Ghazali F, Islam Sarker MZ (2013) Isolation and characterization of pepsin-solubilized collagen from the integument of sea cucumber (Stichopus vastus). J Sci Food Agric 93(5):1083–1088. doi:10.1002/jsfa.5854 CrossRefGoogle Scholar
  26. 26.
    Potaros T, Raksakulthai N, Runglerdkreangkrai J, Worawattanamateekul W (2009) Characteristics of collagen from Nile Tilapia (Oreochromis niloticus) skin isolated by two different methods. Kasetsart J 43:584–593Google Scholar
  27. 27.
    Aberoumand A (2012) Comparative study between different methods of collagen extraction from fish and its properties. World Appl Sci J 16(3):316–319Google Scholar
  28. 28.
    Jongjareonrak A (2006) Characterization and functional properties of collagen and gelatin from Bigeye Snapper (Priacanthus macracanthus) and Brownstripe Red Snapper (Lutjanus vitta) Skins., Prince of Songkla UniversityGoogle Scholar
  29. 29.
    Noitup P, Garnjanagoonchorn W, Morrissey MT (2005) Fish skin type I collagen characteristic comparison of albacore tuna (Thunnus alalunga) and silver-line grunt (Pomadasys kaakan). J Aquat Food Prod Technol 14(1):17–27CrossRefGoogle Scholar
  30. 30.
    Li H, Liu BL, Gao LZ, Chen HL (2004) Studies on bullfrog skin collagen. Food Chem 84(1):65–69. doi:10.1016/s0308-8146(03)00167-5 CrossRefGoogle Scholar
  31. 31.
    Ogawa M, Moody MW, Portier RJ, Bell J, Schexnayder MA, Losso JN (2003) Biochemical properties of black drum and sheepshead seabream skin collagen. J Agric Food Chem 51(27):8088–8092. doi:10.1021/jf034350r CrossRefGoogle Scholar
  32. 32.
    Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68(3):277–281. doi:10.1016/S0308-8146(99)00188-0 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Silva TH, Alves A, Ferreira BM, Oliveira JM, Reys LL, Ferreira RJF, Sousa RA, Silva SS, Mano JF, Reis RL (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 57(5):276–306Google Scholar
  34. 34.
    Burke KE, Naughton G, Waldo E, Cassai N (1983) Bovine collagen implant: histologic chronology in pig dermis. J Dermatol Surg Oncol 9(11):889–895CrossRefGoogle Scholar
  35. 35.
    Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887. doi:10.3390/Ma3031863 CrossRefGoogle Scholar
  36. 36.
    Yudoh K, Karasawa R (2012) A novel biomaterial for cartilage repair generated by self-assembly: creation of a self-organized articular cartilage-like tissue. J Biomater Nanobiotechnol 3:125–129CrossRefGoogle Scholar
  37. 37.
    Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347(3):613–627. doi:10.1007/s00441-011-1243-1 CrossRefGoogle Scholar
  38. 38.
    Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85(2):325–333. doi:10.1016/j.carbpol.2011.02.027 CrossRefGoogle Scholar
  39. 39.
    Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z (2014) Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. J Biosci Bioeng 118(5):593–598. doi:10.1016/j.jbiosc.2014.05.001 CrossRefGoogle Scholar
  40. 40.
    Tabatabai AP, Kaplan DL, Blair DL (2015) Rheology of reconstituted silk fibroin protein gels: the epitome of extreme mechanics. Soft Matter 11(4):756–761. doi:10.1039/c4sm02079k CrossRefGoogle Scholar
  41. 41.
    Sionkowska A, Planecka A, Lewandowska K, Michalska M (2014) The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. J Photochem Photobiol B 140:301–305. doi:10.1016/j.jphotobiol.2014.08.017 CrossRefGoogle Scholar
  42. 42.
    Hashimoto T, Taniguchi Y, Kameda T, Tamada Y, Kurosu H (2015) Changes in the properties and protein structure of silk fibroin molecules in autoclaved fabrics. Polym Degrad Stab 112:20–26. doi:10.1016/j.polymdegradstab.2014.12.007 CrossRefGoogle Scholar
  43. 43.
    Lai GJ, Shalumon KT, Chen SH, Chen JP (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297. doi:10.1016/j.carbpol.2014.04.094 CrossRefGoogle Scholar
  44. 44.
    Lin L, Hao R, Xiong W, Zhong J (2015) Quantitative analyses of the effect of silk fibroin/nano-hydroxyapatite composites on osteogenic differentiation of MG-63 human osteosarcoma cells. J Biosci Bioeng 119(5):591–595. doi:10.1016/j.jbiosc.2014.10.009 CrossRefGoogle Scholar
  45. 45.
    Freddi G (2014) Silk fibroin microfiber and nanofiber scaffolds for tissue engineering and regeneration. In: Kundu S (ed) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead, Cambridge (and imprint of Elsevier), pp 157–190. doi:10.1533/9780857097064.1.157
  46. 46.
    Jin SH, Kweon H, Park JB, Kim CH (2014) The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells. J Surg Res 192(2):e1–e9. doi:10.1016/j.jss.2014.08.054 CrossRefGoogle Scholar
  47. 47.
    Gong X, Liu H, Ding X, Liu M, Li X, Zheng L, Jia X, Zhou G, Zou Y, Li J, Huang X, Fan Y (2014) Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Biomaterials 35(17):4782–4791. doi:10.1016/j.biomaterials.2014.02.050 CrossRefGoogle Scholar
  48. 48.
    Saha S, Kundu B, Kirkham J, Wood D, Kundu SC, Yang XB (2013) Osteochondral tissue engineering in vivo a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS ONE 8(11):e80004. doi:10.1371/journal.pone.0080004.t001 CrossRefGoogle Scholar
  49. 49.
    Foss C, Merzari E, Migliaresi C, Motta A (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47. doi:10.1021/bm301174x CrossRefGoogle Scholar
  50. 50.
    Zhang Y-Q, Shen W-D, Xiang R-L, Zhuge L-J, Gao W-J, Wang W-B (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900. doi:10.1007/s11051-006-9162-x CrossRefGoogle Scholar
  51. 51.
    Yan LP, Oliveira JM, Oliveira AL, Caridade SG, Mano JF, Reis RL (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8(1):289–301. doi:10.1016/j.actbio.2011.09.037 CrossRefGoogle Scholar
  52. 52.
    Silva SS, Gomes ME, Motta A, Mano J, Rodrigues TT, Reis RL, Pinheiro AFM, Migliaresi AC (2008) Novel genipin-cross-linked chitosan silk fibroin sponges for cartilage engineering strategies novel genipin-cross. Biomacromolecules 9:2764–2774. doi:10.1021/bm800874q CrossRefGoogle Scholar
  53. 53.
    Naeimi M, Fathi M, Rafienia M, Bonakdar S (2014) Silk fibroin-chondroitin sulfate-alginate porous scaffolds structural properties and in vitro studies. J Appl Polym Sci. doi:10.1002/app.41048 Google Scholar
  54. 54.
    Vauchel P, Le Roux K, Kaas R, Arhaliass A, Baron R, Legrand J (2009) Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresour Technol 100(3):1291–1296. doi:10.1016/j.biortech.2008.03.005 CrossRefGoogle Scholar
  55. 55.
    Nalamothu N, Potluri A, Muppalla MB (2014) Review on marine alginates and its applications. Indo Am J Pharm Res 4(10):4006–4015Google Scholar
  56. 56.
    Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Biopolymers Online. Wiley Online LibraryGoogle Scholar
  57. 57.
    Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14(7):2535–2554. doi:10.3390/molecules14072535 CrossRefGoogle Scholar
  58. 58.
    Kloareg B, Quatrano RS (1988) Structure of the cell-walls of marine-algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol 26:259–315Google Scholar
  59. 59.
    Fertah M, Belfkira A, Em D, Taourirte M, Brouillette F (2015) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 8(1):1–142CrossRefGoogle Scholar
  60. 60.
    Haug A (1964) Composition and properties of alginates. Norwegian Institute of Technology, TrondheimGoogle Scholar
  61. 61.
    Haug A, Larsen B (1966) A study on the constitution of alginic acid by partial acid hydrolysis. Proc Int Seaweed Symp 5:271–277Google Scholar
  62. 62.
    Haug A, Larsen B, Smidsrød O (1966) A study of the constitution of alginic acid by partial hydrolysis. Acta Chem Scand 20:183–190CrossRefGoogle Scholar
  63. 63.
    Andersen T, Strand BL, Formo K, Alsberg E, Christensen BE (2012) Alginates as biomaterials in tissue engineering. J Carbohydr Chem 37:227–258Google Scholar
  64. 64.
    Rehm AHB (2009) Alginates: biology and applications. Springer, LondonCrossRefGoogle Scholar
  65. 65.
    Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465. doi:10.1016/j.biomaterials.2004.06.044 CrossRefGoogle Scholar
  66. 66.
    Li C, Ni C, Xiong C, Li Q (2009) Preparation and drug release of hydrophobically modified alginate. Chemistry 1:93–96Google Scholar
  67. 67.
    Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Polym 47(3):267–276. doi:10.1016/S0144-8617(01)00178-3 CrossRefGoogle Scholar
  68. 68.
    Pluemsab W, Sakairi N, Furuike T (2005) Synthesis and inclusion property of alpha-cyclodextrin-linked alginate. Polymer 46(23):9778–9783. doi:10.1016/J.Polymer.08.005 CrossRefGoogle Scholar
  69. 69.
    Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E (2001) Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 54(1):102–108CrossRefGoogle Scholar
  70. 70.
    Bu HT, Kjoniksen AL, Elgsaeter A, Nystrom B (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution—calorimetric, rheological, and turbidity studies. Colloid Surf A 278(1–3):166–174. doi:10.1016/J.Colsurfa.12.016 CrossRefGoogle Scholar
  71. 71.
    Yang J-S, Xie Y-J, He W (2010) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39CrossRefGoogle Scholar
  72. 72.
    Galant C, Kjoniksen AL, Nguyen GT, Knudsen KD, Nystrom B (2006) Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of beta-cyclodextrin monomers. J Phys Chem B 110(1):190–195. doi:10.1021/jp0518759 CrossRefGoogle Scholar
  73. 73.
    Park H, Lee KY (2014) Cartilage regeneration using biodegradable oxidized alginate/hyaluronate hydrogels. J Biomed Mater Res Part A 102(12):4519–4525. doi:10.1002/jbm.a.35126 Google Scholar
  74. 74.
    Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222. doi:10.1016/j.biomaterials.2003.10.045 CrossRefGoogle Scholar
  75. 75.
    Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In: StemBook. Cambridge (MA)Google Scholar
  76. 76.
    Hannouche D, Terai H, Fuchs JR, Terada S, Zand S, Nasseri BA, Petite H, Sedel L, Vacanti JP (2007) Engineering of implantable cartilaginous structures from bone marrow-derived mesenchymal stem cells. Tissue Eng 13(1):87–99. doi:10.1089/ten.2006.0067 CrossRefGoogle Scholar
  77. 77.
    Wayne JS, McDowell CL, Shields KJ, Tuan RS (2005) In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng 11(5–6):953–963. doi:10.1089/ten.2005.11.953 CrossRefGoogle Scholar
  78. 78.
    Jin X, Sun Y, Zhang K, Wang J, Shi T, Ju X, Lou S (2007) Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2. Biomaterials 28(19):2994–3003. doi:10.1016/j.biomaterials.2007.03.002 CrossRefGoogle Scholar
  79. 79.
    Dunne LW, Iyyanki T, Hubenak J, Mathur AB (2014) Characterization of dielectrophoresis-aligned nanofibrous silk fibroin-chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomater 10(8):3630–3640. doi:10.1016/j.actbio.2014.05.005 CrossRefGoogle Scholar
  80. 80.
    Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32(25):5773–5781. doi:10.1016/j.biomaterials.2011.04.061 CrossRefGoogle Scholar
  81. 81.
    Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J (2014) Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 10(1):276–288. doi:10.1016/j.actbio.2013.09.002 CrossRefGoogle Scholar
  82. 82.
    Baran ET, Tuzlakoglu K, Mano JF, Reis RL (2012) Enzymatic degradation behavior and cytocompatibility of silk fibroin-starch-chitosan conjugate membranes. Mater Sci Eng C 32(6):1314–1322. doi:10.1016/j.msec.2012.02.015 CrossRefGoogle Scholar
  83. 83.
    Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335CrossRefGoogle Scholar
  84. 84.
    Zhang K, Zhang Y, Yan S, Gong L, Wang J, Chen X, Cui L, Yin J (2013) Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater 9(7):7276–7288. doi:10.1016/j.actbio.2013.03.025 CrossRefGoogle Scholar
  85. 85.
    Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C 33(8):4786–4794. doi:10.1016/j.msec.2013.07.043 CrossRefGoogle Scholar
  86. 86.
    Sionkowska A, Płanecka A (2013) Surface properties of thin films based on the mixtures of chitosan and silk fibroin. J Mol Liq 186:157–162. doi:10.1016/j.molliq.2013.07.008 CrossRefGoogle Scholar
  87. 87.
    Oprenyeszk F, Chausson M, Maquet V, Dubuc JE, Henrotin Y (2013) Protective effect of a new biomaterial against the development of experimental osteoarthritis lesions in rabbit: a pilot study evaluating the intra-articular injection of alginate-chitosan beads dispersed in an hydrogel. Osteoarthr Cartil 21(8):1099–1107. doi:10.1016/j.joca.2013.04.017 CrossRefGoogle Scholar
  88. 88.
    Lafantaisie-Favreau CH, Guzman-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27. doi:10.1186/1471-2474-14-27 CrossRefGoogle Scholar
  89. 89.
    Bell AD, Lascau-Coman V, Sun J, Chen G, Lowerison MW, Hurtig MB, Hoemann CD (2012) Bone-induced chondroinduction in sheep jamshidi biopsy defects with and without treatment by subchondral chitosan-blood implant: 1-day, 3-week, and 3-month repair. Cartilage 4(2):131–143. doi:10.1177/1947603512463227 CrossRefGoogle Scholar
  90. 90.
    Mathieu C, Chevrier A, Lascau-Coman V, Rivard GE, Hoemann CD (2013) Stereological analysis of subchondral angiogenesis induced by chitosan and coagulation factors in microdrilled articular cartilage defects. Osteoarthr Cartil 21(6):849–859. doi:10.1016/j.joca.2013.03.012 CrossRefGoogle Scholar
  91. 91.
    Zhao F, He W, Yan Y, Zhang H, Zhang G, Tian D, Gao H (2014) The application of polysaccharide biocomposites to repair cartilage defects. Int J Polym Sci 2014:9CrossRefGoogle Scholar
  92. 92.
    Meyer K, Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107:629–634Google Scholar
  93. 93.
    Murado MA, Montemayor MI, Cabo ML, Vazquez JA, Gonzalez MP (2012) Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 90(C3):491–498. doi:10.1016/J.Fbp.11.002 CrossRefGoogle Scholar
  94. 94.
    Shen B, Wei A, Bhargav D, Kishen T, Diwan AD (2010) Hyaluronan: its potential application in intervertebral disc regeneration. Orthop Res Rev 2:17–26CrossRefGoogle Scholar
  95. 95.
    Boeriu CG, Springer J, Kooy FK, van den Broek LAM, Eggink G (2013) Production methods for hyaluronan. Int J Carbohydr Chem 2013:14CrossRefGoogle Scholar
  96. 96.
    Liu L, Liu Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99. doi:10.1186/1475-2859-10-99 CrossRefGoogle Scholar
  97. 97.
    Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydr Polym 92(2):1262–1279. doi:10.1016/j.carbpol.2012.10.028 CrossRefGoogle Scholar
  98. 98.
    Collins MN, Birkinshaw C (2008) Physical properties of crosslinked hyaluronic acid hydrogels. J Mater Sci Mater Med 19(11):3335–3343. doi:10.1007/s10856-008-3476-4 CrossRefGoogle Scholar
  99. 99.
    Kang JY, Chung CW, Sung JH, Park BS, Choi JY, Lee SJ, Choi BC, Shim CK, Chung SJ, Kim DD (2009) Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm 369(1–2):114–120. doi:10.1016/j.ijpharm.2008.11.008 CrossRefGoogle Scholar
  100. 100.
    Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34):8771–8782. doi:10.1016/j.biomaterials.2011.08.073 CrossRefGoogle Scholar
  101. 101.
    Julovi SM, Ito H, Nishitani K, Jackson CJ, Nakamura T (2011) Hyaluronan inhibits matrix metalloproteinase-13 in human arthritic chondrocytes via CD44 and P38. J Orthop Res 29(2):258–264. doi:10.1002/jor.21216 CrossRefGoogle Scholar
  102. 102.
    Laroui H, Grossin L, Leonard M, Stoltz JF, Gillet P, Netter P, Dellacherie E (2007) Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 8(12):3879–3885. doi:10.1021/bm700836y CrossRefGoogle Scholar
  103. 103.
    Gomoll AH (2009) Serum levels of hyaluronic acid and chondroitin sulfate as a non-invasive method to evaluate healing after cartilage repair procedures. Arthritis Res Ther 11(4):118. doi:10.1186/ar2730 CrossRefGoogle Scholar
  104. 104.
    Unterman SA, Gibson M, Lee JH, Crist J, Chansakul T, Yang EC, Elisseeff JH (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18(23–24):2497–2506. doi:10.1089/ten.TEA.2011.0711 CrossRefGoogle Scholar
  105. 105.
    Osmalek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340. doi:10.1016/j.ijpharm.2014.03.038 CrossRefGoogle Scholar
  106. 106.
    da Silva RMP, Lopez-Perez PM, Elvira C, Mano JF, Roman JS, Reis RL (2008) Poly(N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnol Bioeng 101(6):1321–1331. doi:10.1002/Bit.22004 CrossRefGoogle Scholar
  107. 107.
    Novac O, Lisa G, Profire L, Tuchilus C, Popa MI (2014) Antibacterial quaternized gellan gum based particles for controlled release of ciprofloxacin with potential dermal applications. Mater Sci Eng 35:291–299. doi:10.1016/j.msec.2013.11.016 CrossRefGoogle Scholar
  108. 108.
    Kang D, Zhang F, Zhang H (2015) Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys 149–150:129–139. doi:10.1016/j.matchemphys.2014.09.055 CrossRefGoogle Scholar
  109. 109.
    Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL (2010) Gellan gum: a new biomaterial for cartilage tissue engineering applications. J Biomed Mater Res Part A 93(3):852–863. doi:10.1002/jbm.a.32574 Google Scholar
  110. 110.
    Prajapati VD, Jani GK, Zala BS, Khutliwala TA (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678. doi:10.1016/j.carbpol.2013.01.030 CrossRefGoogle Scholar
  111. 111.
    da Silva LP, Cerqueira MT, Sousa RA, Reis RL, Correlo VM, Marques AP (2014) Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater 10(11):4787–4797. doi:10.1016/j.actbio.2014.07.009 CrossRefGoogle Scholar
  112. 112.
    Coutinho DF, Sant SV, Shin H, Oliveira JT, Gomes ME, Neves NM, Khademhosseini A, Reis RL (2010) Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502. doi:10.1016/j.biomaterials.2010.06.035 CrossRefGoogle Scholar
  113. 113.
    Tang Y, Sun J, Fan H, Zhang X (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53. doi:10.1016/j.carbpol.2011.11.058 CrossRefGoogle Scholar
  114. 114.
    Shi YG, Meng YC, Li JR, Chen J, Liu YH, Bai X (2014) Chondroitin sulfate: extraction, purification, microbial and chemical synthesis. J Chem Technol Biot 89(10):1445–1465. doi:10.1002/Jctb.4454 CrossRefGoogle Scholar
  115. 115.
    Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially omega-3 fatty acids. Int J Rheumatol 2011:17CrossRefGoogle Scholar
  116. 116.
    Michelacci YM, Dietrich CP (1976) Structure of chondroitin sulfates. Analyses of the products formed from chondroitin sulfates A and C by the action of the chondroitinases C and AC from Flavobacterium heparinum. Biochim Biophys Acta 451(2):436–443CrossRefGoogle Scholar
  117. 117.
    Seno N, Meyer K (1963) Comparative biochemistry of skin; the mucopolysaccharides of shark skin. Biochim Biophys Acta 78:258–264CrossRefGoogle Scholar
  118. 118.
    Chen JS, Chang CM, Wu JC, Wang SM (2000) Shark cartilage extract interferes with cell adhesion and induces reorganization of focal adhesions in cultured endothelial cells. J Cell Biochem 78(3):417–428CrossRefGoogle Scholar
  119. 119.
    Srinivasan SR, Radhakrishinamurthy B, Dalferes ER Jr, Berenson GS (1969) Glycosaminoglycans from squid skin. Comp Biochem Physiol 28(1):169–176CrossRefGoogle Scholar
  120. 120.
    Karamanos NK, Aletras AJ, Antonopoulos CA, Tsegenidis T, Tsiganos CP, Vynios DH (1988) Extraction and fractionation of proteoglycans from squid skin. Biochim Biophys Acta 966(1):36–43CrossRefGoogle Scholar
  121. 121.
    Vazquez JA, Rodriguez-Amado I, Montemayor MI, Fraguas J, Gonzalez Mdel P, Murado MA (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11(3):747–774. doi:10.3390/md11030747 CrossRefGoogle Scholar
  122. 122.
    Sugahara K, Tanaka Y, Yamada S, Seno N, Kitagawa H, Haslam SM, Morris HR, Dell A (1996) Novel sulfated oligosaccharides containing 3-O-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K. Unexpected degradation by chondroitinase ABC. J Biol Chem 271(43):26745–26754CrossRefGoogle Scholar
  123. 123.
    Borsig L, Wang LC, Cavalcante MCM, Cardilo-Reis L, Ferreira PL, Mourao PAS, Esko JD, Pavao MSG (2007) Selectin blocking activity of a fucosylated chondroitin sulfate glycosaminoglycan from sea cucumber—effect on tumor metastasis and neutrophil recruitment. J Biol Chem 282(20):14984–14991. doi:10.1074/Jbc.M610560200 CrossRefGoogle Scholar
  124. 124.
    Mano JF (2013) Biomimetic approaches for biomaterials development. Wiley, New YorkGoogle Scholar
  125. 125.
    Kim S-K (2015) Springer handbook of marine biotechnology. Springer, LondonCrossRefGoogle Scholar
  126. 126.
    Cole AG, Hall BK (2004) The nature and significance of invertebrate cartilages revisited: distribution and histology of cartilage and cartilage-like tissues within the Metazoa. Zoology (Jena) 107(4):261–273. doi:10.1016/j.zool.2004.05.001 CrossRefGoogle Scholar
  127. 127.
    Lai JY, Li YT, Cho CH, Yu TC (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomed 7:1101–1114. doi:10.2147/IJN.S28753 CrossRefGoogle Scholar
  128. 128.
    Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963. doi:10.1016/j.biomaterials.2006.02.031 CrossRefGoogle Scholar
  129. 129.
    Orellana J (2013) Advanced biomaterials from renewable resources: an investigation on cellulose nanocrystal composites and CO2 extraction of rendered materials. Clemson University, ClemsonGoogle Scholar
  130. 130.
    Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, Kelly TA, Chao PH, Hung C, Kaplan DL, Vunjak-Novakovic G (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36. doi:10.1016/j.actbio.2014.09.032 CrossRefGoogle Scholar
  131. 131.
    Khanarian NT, Haney NM, Burga RA, Lu HH (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258. doi:10.1016/j.biomaterials.2012.03.076 CrossRefGoogle Scholar
  132. 132.
    Zignego DL, Jutila AA, Gelbke MK, Gannon DM, June RK (2014) The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. J Biomech 47(9):2143–2148. doi:10.1016/j.jbiomech.2013.10.051 CrossRefGoogle Scholar
  133. 133.
    Masson P, Beinert G, Franta E, Rempp P (1982) Synthesis of polyethylene oxide macromers. Polym Bull 7(1):17–22CrossRefGoogle Scholar
  134. 134.
    Dai X, Chen X, Yang L, Foster S, Coury AJ, Jozefiak TH (2011) Free radical polymerization of poly(ethylene glycol) diacrylate macromers: impact of macromer hydrophobicity and initiator chemistry on polymerization efficiency. Acta Biomater 7(5):1965–1972. doi:10.1016/j.actbio.2011.01.005 CrossRefGoogle Scholar
  135. 135.
    Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49(36):6288–6308. doi:10.1002/anie.200902672 CrossRefGoogle Scholar
  136. 136.
    Konradi R, Acikgoz C, Textor M (2012) Polyoxazolines for nonfouling surface coatings–a direct comparison to the gold standard PEG. Macromol Rapid Commun 33(19):1663–1676. doi:10.1002/marc.201200422 CrossRefGoogle Scholar
  137. 137.
    Sah H, Thoma LA, Desu HR, Sah E, Wood GC (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomed 8:747–765. doi:10.2147/IJN.S40579 CrossRefGoogle Scholar
  138. 138.
    Bencherif SA, Srinivasan A, Sheehan JA, Walker LM, Gayathri C, Gil R, Hollinger JO, Matyjaszewski K, Washburn NR (2009) End-group effects on the properties of PEG-co-PGA hydrogels. Acta Biomater 5(6):1872–1883. doi:10.1016/j.actbio.2009.02.030 CrossRefGoogle Scholar
  139. 139.
    Kinard LA, Kasper FK, Mikos AG (2012) Synthesis of oligo(poly(ethylene glycol) fumarate). Nat Protoc 7(6):1219–1227. doi:10.1038/nprot.2012.055 CrossRefGoogle Scholar
  140. 140.
    Micic M, Jeremic M, Radotic K, Leblanc RM (2000) A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. J Colloid Interface Sci 231(1):190–194. doi:10.1006/jcis.2000.7136 CrossRefGoogle Scholar
  141. 141.
    Hutanu D, Frishberg MD, Guo L, Darie CC (2014) Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod Chem Appl 2(12):2Google Scholar
  142. 142.
    Ferretti M, Marra KG, Kobayashi K, Defail AJ, Chu CR (2006) Controlled in vivo degradation of genipin crosslinked polyethylene glycol hydrogels within osteochondral defects. Tissue Eng 12(9):2657–2663. doi:10.1089/ten.2006.12.2657 CrossRefGoogle Scholar
  143. 143.
    Eswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK, Ho ML (2012) Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats. Acta Biomater 8(6):2254–2262. doi:10.1016/j.actbio.2012.03.015 CrossRefGoogle Scholar
  144. 144.
    Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B 113:352–360. doi:10.1016/j.colsurfb.2013.09.028 CrossRefGoogle Scholar
  145. 145.
    Morille M, Van-Thanh T, Garric X, Cayon J, Coudane J, Noel D, Venier-Julienne MC, Montero-Menei CN (2013) New PLGA-P188-PLGA matrix enhances TGF-beta3 release from pharmacologically active microcarriers and promotes chondrogenesis of mesenchymal stem cells. J Control Release 170(1):99–110. doi:10.1016/j.jconrel.2013.04.017 CrossRefGoogle Scholar
  146. 146.
    Chang NJ, Lin CC, Li CF, Wang DA, Issariyaku N, Yeh ML (2012) The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit. Biomaterials 33(11):3153–3163. doi:10.1016/j.biomaterials.2011.12.054 CrossRefGoogle Scholar
  147. 147.
    Rotunda AM, Narins RS (2006) Poly-L-lactic acid: a new dimension in soft tissue augmentation. Dermatol Ther 19(3):151–158. doi:10.1111/j.1529-8019.2006.00069.x CrossRefGoogle Scholar
  148. 148.
    Narins RS, Baumann L, Brandt FS, Fagien S, Glazer S, Lowe NJ, Monheit GD, Rendon MI, Rohrich RJ, Werschler WP (2010) A randomized study of the efficacy and safety of injectable poly-l-lactic acid versus human-based collagen implant in the treatment of nasolabial fold wrinkles. J Am Acad Dermatol 62(3):448–462CrossRefGoogle Scholar
  149. 149.
    Ramos AR (2014) Applications of PLA-poly(lactic acid) in tissue engineering and delivery systems. Dissertation, Biomedical Materials and Devices from University of Aveiro (Portugal).Google Scholar
  150. 150.
    Lai WC (2011) Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol. J Phys Chem B 115(38):11029–11037. doi:10.1021/jp2037312 CrossRefGoogle Scholar
  151. 151.
    Hyun MY, Lee Y, No YA, Yoo KH, Kim MN, Hong CK, Chang SE, Won CH, Kim BJ (2015) Efficacy and safety of injection with poly-L-lactic acid compared with hyaluronic acid for correction of nasolabial fold: a randomized, evaluator-blinded, comparative study. Clin Exp Dermatol 40(2):129–135. doi:10.1111/ced.12499 CrossRefGoogle Scholar
  152. 152.
    Danesin R, Brun P, Roso M, Delaunay F, Samouillan V, Brunelli K, Iucci G, Ghezzo F, Modesti M, Castagliuolo I, Dettin M (2012) Self-assembling peptide-enriched electrospun polycaprolactone scaffolds promote the h-osteoblast adhesion and modulate differentiation-associated gene expression. Bone 51(5):851–859. doi:10.1016/j.bone.2012.08.119 CrossRefGoogle Scholar
  153. 153.
    Pan L, Pei X, He R, Wan Q, Wang J (2012) Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids Surf B 93:226–234. doi:10.1016/j.colsurfb.2012.01.011 CrossRefGoogle Scholar
  154. 154.
    Chen C-H, Liu J, Chua C-K, Chou S-M, Shyu V, Chen J-P (2014) Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials 7(3):2104–2119. doi:10.3390/ma7032104 CrossRefGoogle Scholar
  155. 155.
    Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5(10):839–848CrossRefGoogle Scholar
  156. 156.
    Shen ZY, Terao K, Maki Y, Dobashi T, Ma GH, Yamamoto T (2006) Synthesis and phase behavior of aqueous poly(N-isopropylacrylamide-co-acrylamide), poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) and poly (N-isopropylacrylamide-co-2-hydroxyethyl methacrylate). Colloid Polym Sci 284(9):1001–1007. doi:10.1007/S00396-005-1442-Y CrossRefGoogle Scholar
  157. 157.
    Schilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G, Muller AHE (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules 37(21):7861–7866. doi:10.1021/Ma035838w CrossRefGoogle Scholar
  158. 158.
    Bearat HH, Lee BH, Valdez J, Vernon BL (2011) Synthesis, characterization and properties of a physically and chemically gelling polymer system using poly(NIPAAm-co-HEMA-acrylate) and poly(NIPAAm-co-cysteamine). J Biomater Sci 22:1299–1318CrossRefGoogle Scholar
  159. 159.
    Spasojevic M, Vorenkamp J, Jansen MRPACS, de Vos P, Schouten AJ (2014) Synthesis and phase behavior of poly(N-isopropylacrylamide)-b-poly(L-lysine hydrochloride) and poly(N-Isopropylacrylamide-co-acrylamide)-b-poly(L-lysine hydrochloride). Materials 7(7):5305–5326. doi:10.3390/Ma7075305 CrossRefGoogle Scholar
  160. 160.
    Robb SA, Lee BH, McLemore R, Vernon BL (2007) Simultaneously physically and chemically gelling polymer system utilizing a poly(NIPAAm-co-cysteamine)-based copolymer. Biomacromolecules 8(7):2294–2300. doi:10.1021/bm070267r CrossRefGoogle Scholar
  161. 161.
    Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering, vol 3Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristiana Gonçalves
    • 1
    • 2
  • Hajer Radhouani
    • 1
    • 2
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoBarco, GuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations