Cartilage Tissue Engineering and Regenerative Strategies

  • Alain da Silva Morais
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

Human adult articular cartilage is a unique avascular tissue which displays the ability to resist to repetitive compressive stress. However, this connective tissue exhibits slight capacity for intrinsic restoration and, then even injuries or lesions can lead to progressive damage and osteoarthritic joint deterioration. Therefore, the field of cartilage repair continues to expand, bridging the gap between palliative care and chondral defects reconstruction. Tissue engineering strategy, centered on three actors: cells, proteins and scaffolds, received a lot of attention in the aim to develop an articular cartilage regeneration process that will be efficient, simple, and based on global market, cost-effective. The current state of cartilage tissue engineering with respect to different cell-sources, growth factors and biomaterial scaffolds, as well as the strategies employed in the restoration and repair of damaged articular cartilage will be the focus of this book chapter.

References

  1. 1.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921. doi:10.1126/science.1222454 CrossRefGoogle Scholar
  2. 2.
    Matsiko A, Levingstone T, O’Brien F (2013) Advanced strategies for articular cartilage defect repair. Materials (Basel) 6:637–668. doi:10.3390/ma6020637 CrossRefGoogle Scholar
  3. 3.
    Moran CJ, Pascual-Garrido C, Chubinskaya S et al (2014) Restoration of articular cartilage. J Bone Joint Surg Am 96:336–344. doi:10.2106/JBJS.L.01329 CrossRefGoogle Scholar
  4. 4.
    Johnstone B, Alini M, Cucchiarini M (2013) Tissue engineering for articular cartilage repair—the state of the art. Eur Cell Mater 25:248–267Google Scholar
  5. 5.
    Makris EA, Gomoll AH, Malizos KN et al (2014) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. doi:10.1038/nrrheum.2014.157 Google Scholar
  6. 6.
    Wilusz RE, Sanchez-adams J, Guilak F (2014) The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 39:25–32. doi:10.1016/j.matbio.2014.08.009 CrossRefGoogle Scholar
  7. 7.
    Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31:706–721. doi:10.1016/j.biotechadv.2012.11.004 CrossRefGoogle Scholar
  8. 8.
    Hsueh M, Önnerfjord P, Byers V (2014) Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol 39:56–66. doi:10.1016/j.matbio.2014.08.012 CrossRefGoogle Scholar
  9. 9.
    Dewan AK, Gibson MA, Elisseeff JH, Trice ME (2014) Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014:11. doi:10.1155/2014/272481 CrossRefGoogle Scholar
  10. 10.
    Leyh M, Seitz A, Dürselen L et al (2014) Subchondral bone influences chondrogenic differentiation and collagen production of human bone marrow-derived mesenchymal stem cells and articular chondrocytes. Arthritis Res Ther 16:1–18. doi:10.1186/s13075-014-0453-9 CrossRefGoogle Scholar
  11. 11.
    Hong E, Reddi AH (2013) Dedifferentiation and redifferentiation of articular chondrocytes from surface and middle zones: changes in microRNAs-221/-222, -140, and -143/145 expression. Tissue Eng Part A 19:1015–1022. doi:10.1089/ten.TEA.2012.0055 CrossRefGoogle Scholar
  12. 12.
    Hubka KM, Dahlin RL, Meretoja VV et al (2014) Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B Rev 20:641–654. doi:10.1089/ten.TEB.2014.0034 CrossRefGoogle Scholar
  13. 13.
    Li S, Sengers BG, Oreffo RO, Tare RS (2015) Chondrogenic potential of human articular chondrocytes and skeletal stem cells: a comparative study. J Biomater Appl 29:824–836. doi:10.1177/0885328214548604 CrossRefGoogle Scholar
  14. 14.
    Rosenzweig DH, Matmati M, Khayat G et al (2012) Culture of primary bovine chondrocytes on a continuously expanding surface inhibits dedifferentiation. Tissue Eng Part A 18:120803081750003. doi:10.1089/ten.tea.2012.0215 CrossRefGoogle Scholar
  15. 15.
    Rosenzweig DH, Ou SJ, Quinn TM (2013) P38 mitogen-activated protein kinase promotes dedifferentiation of primary articular chondrocytes in monolayer culture. J Cell Mol Med 17:508–517. doi:10.1111/jcmm.12034 CrossRefGoogle Scholar
  16. 16.
    Ma B, Leijten JCH, Wu L et al (2013) Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr Cartil 21:599–603. doi:10.1016/j.joca.2013.01.014 CrossRefGoogle Scholar
  17. 17.
    DuRaine GD, Brown WE, Hu JC, Athanasiou KA (2014) Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng. doi:10.1007/s10439-014-1161-y Google Scholar
  18. 18.
    Cucchiarini M, Venkatesan JK, Ekici M et al (2012) Human mesenchymal stem cells overexpressing therapeutic genes: from basic science to clinical applications for articular cartilage repair. Biomed Mater Eng 22:197–208. doi:10.3233/BME-2012-0709 Google Scholar
  19. 19.
    Trappmann B, Gautrot JE, Connelly JT et al (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649. doi:10.1038/nmat3339 CrossRefGoogle Scholar
  20. 20.
    Paschos NK, Brown WE, Eswaramoorthy R et al (2014) Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 4:524–531. doi:10.1002/term.1870 Google Scholar
  21. 21.
    Park H, Jung S, Yang K et al (2014) Biomaterials paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials 35:9811–9823. doi:10.1016/j.biomaterials.2014.09.002 CrossRefGoogle Scholar
  22. 22.
    Chen W, Villa-Diaz LG, Sun Y et al (2012) Nanotopography influences adhesion, spreading, and self-renewal of human embryonic stem cells. ACS Nano 6:4094–4103. doi:10.1021/nn3004923 CrossRefGoogle Scholar
  23. 23.
    Kamei K-I, Hirai Y, Yoshioka M et al (2013) Phenotypic and transcriptional modulation of human pluripotent stem cells induced by nano/microfabrication materials. Adv Healthc Mater 2:287–291. doi:10.1002/adhm.201200283 CrossRefGoogle Scholar
  24. 24.
    Baghaban Eslaminejad M, Malakooty Poor E (2014) Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World J Stem Cells 6:344–354. doi:10.4252/wjsc.v6.i3.344 CrossRefGoogle Scholar
  25. 25.
    Toh WS, Foldager CB, Pei M, Hui JHP (2014) Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration. Stem Cell Rev 10:686–696. doi:10.1007/s12015-014-9526-z CrossRefGoogle Scholar
  26. 26.
    Brown PT, Handorf AM, Jeon WB, Li W-J (2013) Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 19:3429–3445. doi:10.1016/j.biotechadv.2011.08.021.Secreted CrossRefGoogle Scholar
  27. 27.
    Fernández Vallone VB, Romaniuk MA, Choi H et al (2013) Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 85:1–10. doi:10.1016/j.diff.2012.08.004 CrossRefGoogle Scholar
  28. 28.
    Lee T, Jang J, Kang S et al (2014) Mesenchymal stem cell-conditioned medium enhances embryonic stem cells and human induced pluripotent stem cells by mesodermal lineage induction. Tissue Eng Part A 20:1306–1313. doi:10.1089/ten.tea.2013.0265 CrossRefGoogle Scholar
  29. 29.
    Orth P, Rey-Rico A (2014) Current perspectives in stem cell research for knee cartilage repair. Stem Cells 7:1–17Google Scholar
  30. 30.
    Patel DM, Shah J, Srivastava AS (2013) Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int. doi:10.1155/2013/496218 Google Scholar
  31. 31.
    Ma S, Xie N, Li W et al (2014) Immunobiology of mesenchymal stem cells. Cell Death Differ 21:216–225. doi:10.1038/cdd.2013.158 CrossRefGoogle Scholar
  32. 32.
    Wei X, Yang X, Han Z et al (2013) Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 34:747–754. doi:10.1038/aps.2013.50 CrossRefGoogle Scholar
  33. 33.
    Figueroa FE, Carrión F, Villanueva S, Khoury M (2012) Mesenchymal stem cell treatment for autoimmune diseases: a critical review. Biol Res 45:269–277. doi:10.4067/S0716-97602012000300008 CrossRefGoogle Scholar
  34. 34.
    Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int. doi:10.1155/2013/732742 Google Scholar
  35. 35.
    Mabuchi Y, Houlihan DD, Akazawa C et al (2013) Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013:507301. doi:10.1155/2013/507301 CrossRefGoogle Scholar
  36. 36.
    Wang S, Chang Q, Kong X, Wang C (2015) The chondrogenic induction potential for bone marrow-derived stem cells between autologous platelet-rich plasma and common chondrogenic induction agents: a preliminary comparative study. Stem Cells Int 2015:1–7, Article ID 589124. doi: 10.1155/2015/589124
  37. 37.
    Torreggiani E, Lisignoli G, Manferdini C et al (2012) Role of slug transcription factor in human mesenchymal stem cells. J Cell Mol Med 16:740–751. doi:10.1111/j.1582-4934.2011.01352.x CrossRefGoogle Scholar
  38. 38.
    Bosetti M, Boccafoschi F, Leigheb M et al (2012) Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. J Tissue Eng Regen Med 6:205–213. doi:10.1002/term.416 CrossRefGoogle Scholar
  39. 39.
    Lynch K, Pei M (2014) Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies. Organogenesis. doi:10.4161/15476278.2014.970089 Google Scholar
  40. 40.
    Orbay H, Tobita M, Mizuno H (2012) Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem Cells Int. doi:10.1155/2012/461718 Google Scholar
  41. 41.
    Zuk P (2013) Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells 2013:1–35. doi:10.1155/2013/713959 CrossRefGoogle Scholar
  42. 42.
    Li X, Yuan J, Li W et al (2014) Direct differentiation of homogeneous human adipose stem cells into functional hepatocytes by mimicking liver embryogenesis. J Cell Physiol 229:801–812. doi:10.1002/jcp.24501 CrossRefGoogle Scholar
  43. 43.
    Sun H, Liu Y, Jiang T et al (2014) Chondrogenic differentiation and three dimensional chondrogenesis of human adipose-derived stem cells induced by engineered cartilage-derived conditional media. Tissue Eng Regen Med 11:59–66. doi:10.1007/s13770-013-1120-y CrossRefGoogle Scholar
  44. 44.
    De Sousa E, Casado PL, Neto VM et al (2014) Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther 5:1–6CrossRefGoogle Scholar
  45. 45.
    Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3:25. doi:10.1186/scrt116 CrossRefGoogle Scholar
  46. 46.
    Campbell D, Pei M (2012) Surface markers for chondrogenic determination: a highlight of synovium-derived stem cells. Cells 1:1107–1120. doi:10.3390/cells1041107 CrossRefGoogle Scholar
  47. 47.
    Nakamura T, Sekiya I, Muneta T et al (2012) Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy 14:327–338. doi:10.3109/14653249.2011.638912 CrossRefGoogle Scholar
  48. 48.
    Lee JC, Min HJ, Park HJ et al (2013) Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthrosc J Arthrosc Relat Surg 29:1034–1046. doi:10.1016/j.arthro.2013.02.026 CrossRefGoogle Scholar
  49. 49.
    Lee J-C, Lee SY, Min HJ et al (2012) Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 18:2173–2186. doi:10.1089/ten.tea.2011.0643 CrossRefGoogle Scholar
  50. 50.
    Gong SP, Kim B, Kwon HS et al (2014) The co-injection of somatic cells with embryonic stem cells affects teratoma formation and the properties of teratoma-derived stem cell-like cells. PLoS ONE 9:1–9. doi:10.1371/journal.pone.0105975 Google Scholar
  51. 51.
    Lee M-O, Moon SH, Jeong H-C et al (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci USA 110:E3281–E3290. doi:10.1073/pnas.1303669110 CrossRefGoogle Scholar
  52. 52.
    Cheng A, Kapacee Z, Peng J et al (2014) Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Trans Med Publ 3:1–8. doi:10.5966/sctm.2014-0101 CrossRefGoogle Scholar
  53. 53.
    Craft AM, Ahmed N, Rockel JS et al (2013) Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140:2597–2610. doi:10.1242/dev.087890 CrossRefGoogle Scholar
  54. 54.
    Tsumaki N, Okada M, Yamashita A (2014) IPS cell technologies and cartilage regeneration. Bone. doi:10.1016/j.bone.2014.07.011 Google Scholar
  55. 55.
    Stromps J-P, Paul NE, Rath B et al (2014) Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? Biomed Res Int 2014:740926. doi:10.1155/2014/740926 CrossRefGoogle Scholar
  56. 56.
    Fisher MC (2012) The potential of human embryonic stem cells for articular cartilage repair and osteoarthritis treatment. Rheumatol Curr Res. doi:10.4172/2161-1149.S3-004 Google Scholar
  57. 57.
    Diekman BO, Christoforou N, Willard VP et al (2012) Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci. doi:10.1073/pnas.1210422109 Google Scholar
  58. 58.
    Irion VH, Flanigan DC (2013) New and emerging techniques in cartilage repair: other scaffold-based cartilage treatment options. Oper Tech Sports Med 21:125–137. doi:10.1053/j.otsm.2013.03.001 CrossRefGoogle Scholar
  59. 59.
    Liu M, Yu X, Huang F et al (2013) Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 36:868–873. doi:10.3928/01477447-20131021-10 CrossRefGoogle Scholar
  60. 60.
    Salgado AJ, Oliveira JM, Martins A et al (2013) Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol. doi:10.1016/B978-0-12-410499-0.00001-0 Google Scholar
  61. 61.
    Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1–8. doi:10.1155/2014/489128 CrossRefGoogle Scholar
  62. 62.
    Rodrigues MT, Lee SJ, Gomes ME et al (2012) Bilayered constructs aimed at osteochondral strategies: the influence of medium supplements in the osteogenic and chondrogenic differentiation of amniotic fluid-derived stem cells. Acta Biomater 8:2795–2806. doi:10.1016/j.actbio.2012.04.013 CrossRefGoogle Scholar
  63. 63.
    Izadifar Z, Chen X, Kulyk W (2012) Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater 3:799–838. doi:10.3390/jfb3040799 CrossRefGoogle Scholar
  64. 64.
    Demoor M, Ollitrault D, Gomez-Leduc T et al (2014) Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 1840:2414–2440. doi:10.1016/j.bbagen.2014.02.030 CrossRefGoogle Scholar
  65. 65.
    Zhang Z, Gupte M, Ma P (2013) Biomaterials and stem cells for tissue engineering. Expert Opin Biol 13:527–540. doi:10.1517/14712598.2013.756468.Biomaterials CrossRefGoogle Scholar
  66. 66.
    Griffin M, Butler P, Seifalian A, Szarko M (2013) Update into articular cartilage tissue engineering. OapublishinglondonCom 1:1–6Google Scholar
  67. 67.
    Musumeci G, Castrogiovanni P, Leonardi R et al (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5:80–88. doi:10.5312/wjo.v5.i2.80 CrossRefGoogle Scholar
  68. 68.
    Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (Basel) 6:1285–1309. doi:10.3390/ma6041285 CrossRefGoogle Scholar
  69. 69.
    Goldman SM, Barabino GA (2014) Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs. J Tissue Eng Regen Med. doi:10.1002/term.1954 Google Scholar
  70. 70.
    Martins EAN, Michelacci YM, Baccarin RYA et al (2014) Evaluation of chitosan-GP hydrogel biocompatibility in osteochondral defects: an experimental approach. BMC Vet Res 10:1CrossRefGoogle Scholar
  71. 71.
    Whu SW, Hung K-C, Hsieh K-H et al (2013) In vitro and in vivo evaluation of chitosan–gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2855–2863. doi:10.1016/j.msec.2013.03.003 CrossRefGoogle Scholar
  72. 72.
    Unterman SA, Gibson M, Lee JH et al (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18:120814114305007. doi:10.1089/ten.tea.2011.0711 CrossRefGoogle Scholar
  73. 73.
    Levett PA, Hutmacher DW, Malda J, Klein TJ (2014) Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. PLoS ONE 9:e113216. doi:10.1371/journal.pone.0113216 CrossRefGoogle Scholar
  74. 74.
    Ahearne M, Kelly DJ (2013) A comparison of fibrin, agarose and gellan gum hydrogels as carriers of stem cells and growth factor delivery microspheres for cartilage regeneration. Biomed Mater 8:035004. doi:10.1088/1748-6041/8/3/035004 CrossRefGoogle Scholar
  75. 75.
    Chung JY, Song M, Ha C-W et al (2014) Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model. Stem Cell Res Ther 5:39. doi:10.1186/scrt427 CrossRefGoogle Scholar
  76. 76.
    Mastbergen SC, Saris DB, Lafeber FP (2013) Functional articular cartilage repair: here, near, or is the best approach not yet clear? Nat Rev Rheumatol 9:277–290. doi:10.1038/nrrheum.2013.29 CrossRefGoogle Scholar
  77. 77.
    Freymann U, Petersen W, Kaps C (2013) Cartilage regeneration revisited: entering of new one-step procedures for chondral cartilage repair. OapublishinglondonCom 1:1–6Google Scholar
  78. 78.
    Yodmuang S, Mcnamara SL, Nover AB et al (2014) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. doi:10.1016/j.actbio.2014.09.032 Google Scholar
  79. 79.
    Snyder TN, Madhavan K, Intrator M et al (2014) A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair. J Biol Eng 8:10. doi:10.1186/1754-1611-8-10 CrossRefGoogle Scholar
  80. 80.
    Pereira DR, Canadas RF, Silva-Correia J et al (2013) Gellan gum-based hydrogel bilayered scaffolds for osteochondral tissue engineering. Key Eng Mater 587:255–260. doi:10.4028/www.scientific.net/KEM.587.255 CrossRefGoogle Scholar
  81. 81.
    Popa EG, Reis RL, Gomes ME (2014) Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 8551:1–14. doi:10.3109/07388551.2014.889079 Google Scholar
  82. 82.
    Sharma B, Fermanian S, Gibson M et al (2013) Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med 5:167ra6. doi:10.1126/scitranslmed.3004838 CrossRefGoogle Scholar
  83. 83.
    Norton AB, Hancocks RD, Grover LM (2014) Poly (vinyl alcohol) modification of low acyl gellan hydrogels for applications in tissue regeneration. Food Hydrocoll 42:373–377. doi:10.1016/j.foodhyd.2014.05.001 CrossRefGoogle Scholar
  84. 84.
    Balakrishnan B, Joshi N, Banerjee R (2013) Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration. J Mater Chem B 1:5564. doi:10.1039/c3tb21056a CrossRefGoogle Scholar
  85. 85.
    Chen J-L, Duan L, Zhu W et al (2014) Extracellular matrix production in vitro in cartilage tissue engineering. J Transl Med 12:88. doi:10.1186/1479-5876-12-88 CrossRefGoogle Scholar
  86. 86.
    Nooeaid P, Salih V, Beier JP, Boccaccini AR (2012) Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 16:2247–2270. doi:10.1111/j.1582-4934.2012.01571.x CrossRefGoogle Scholar
  87. 87.
    Alves da Silva ML, Costa-Pinto AR, Martins A et al (2013) Conditioned medium as a strategy for human stem cells chondrogenic differentiation. J Tissue Eng Regen Med 4:524–531. doi:10.1002/term.1812 Google Scholar
  88. 88.
    Fernandes-Silva S, Moreira-Silva J, Silva TH et al (2013) Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere. Macromol Biosci 13:1621–1631. doi:10.1002/mabi.201300228 CrossRefGoogle Scholar
  89. 89.
    Chen C-H, Shyu VB-H, Chen J-P, Lee M-Y (2014) Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication 6:015004. doi:10.1088/1758-5082/6/1/015004 CrossRefGoogle Scholar
  90. 90.
    Yan LP, Oliveira JM, Oliveira AL et al (2012) Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater 8:289–301. doi:10.1016/j.actbio.2011.09.037 CrossRefGoogle Scholar
  91. 91.
    Yan L-P, Silva-Correia J, Oliveira MB et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater. doi:10.1016/j.actbio.2014.10.021 Google Scholar
  92. 92.
    Yan L, Oliveira JM, Oliveira AL, Reis RL (2014) In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. J Biomed Mater Res Part B. doi:10.1002/jbm.b.33267 Google Scholar
  93. 93.
    Ferris CJ, Stevens LR, Gilmore KJ et al (2014) Peptide modification of purified gellan gum. J Mater Chem B. doi:10.1039/c4tb01727g Google Scholar
  94. 94.
    Ferris CJ, Gilmore KJ, Wallace GG, Panhuis M et al (2013) Modified gellan gum hydrogels for tissue engineering applications. Soft Matter 9:3705. doi:10.1039/c3sm27389j CrossRefGoogle Scholar
  95. 95.
    Beachley V, Hepfer RG, Katsanevakis E et al (2014) Precisely assembled nanofiber arrays as a platform to engineer aligned cell sheets for biofabrication. Bioengineering 1:114–133. doi:10.3390/bioengineering1030114 CrossRefGoogle Scholar
  96. 96.
    Bourget J, Guillemette M, Veres T et al (2013) Alignment of cells and extracellular matrix within tissue-engineered substitutes. Adv Biomater Sci Biomed Appl Ref. doi:10.5772/54142 Google Scholar
  97. 97.
    Mashhadikhan M, Soleimani M, Parivar K, Yaghmaei P (2015) ADSCs on PLLA/PCL hybrid nanoscaffold and gelatin modification: cytocompatibility and mechanical properties. Avicenna J Med Biotechnol 7:32–38Google Scholar
  98. 98.
    Venugopal JR, Prabhakaran MP, Mukherjee S et al (2012) Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface 9:1–19. doi:10.1098/rsif.2011.0301 CrossRefGoogle Scholar
  99. 99.
    Markeson D, Pleat JM, Sharpe JR et al (2013) Scarring, stem cells, scaffolds and skin repair. J Tissue Eng Regen Med 4:524–531. doi:10.1002/term.1841 Google Scholar
  100. 100.
    Zeng W, Rong M, Hu X et al (2014) Incorporation of chitosan microspheres into collagen–chitosan scaffolds for the controlled release of nerve growth factor. PLoS ONE. doi:10.1371/journal.pone.0101300 Google Scholar
  101. 101.
    Thomopoulos S, Sakiyama-Elbert S, Silva M et al (2014) Polymer nanofiber scaffold for a heparin/fibrin based growth factor delivery systemGoogle Scholar
  102. 102.
    Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M (2012) Scaffolds for growth factor delivery as applied to bone tissue engineering. Int J Polym Sci. doi:10.1155/2012/174942 Google Scholar
  103. 103.
    García Cruz DM, Sardinha V, Escobar Ivirico JL et al (2013) Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering. J Mater Sci Mater Med 24:503–513. doi:10.1007/s10856-012-4818-9 CrossRefGoogle Scholar
  104. 104.
    Zhang W, Zhu C, Ye D et al (2014) Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. PLoS ONE 9:1–9. doi:10.1371/journal.pone.0102371 Google Scholar
  105. 105.
    Almeida HV, Liu Y, Cunniffe GM et al (2014) Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater. doi:10.1016/j.actbio.2014.05.030 Google Scholar
  106. 106.
    Santo VE, Gomes M, Mano J, Reis RL (2012) Controlled release strategies for bone, cartilage and osteochondral engineering—part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng Part B Rev 19:327–352. doi:10.1089/ten.TEB.2012.0727 CrossRefGoogle Scholar
  107. 107.
    Jonitz A, Lochner K, Tischer T et al (2012) TGF-b1 and IGF-1 influence the re-differentiation capacity of human chondrocytes in 3D pellet cultures in relation to different oxygen concentrations. Int J Mol Med 30:666–672. doi:10.3892/ijmm.2012.1042 Google Scholar
  108. 108.
    Loffredo FS, Pancoast JR, Cai L et al (2014) Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol (Hoboken, NJ) 66:1247–1255. doi:10.1002/art.38357 CrossRefGoogle Scholar
  109. 109.
    Reyes R, Delgado A, Solis R et al (2013) Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co-glycolic bilayered scaffold. J Biomed Mater Res A. 102:1–11. doi:10.1002/jbma.34769 Google Scholar
  110. 110.
    Lu C-H, Yeh T-S, Fang Y-HD et al (2014) Regenerating cartilages by engineered ASCs: Prolonged TGF-(beta)3/BMP-6 expression improved articular cartilage formation and restored zonal structure. Mol Ther 22:186–195. doi:10.1038/mt.2013.165 CrossRefGoogle Scholar
  111. 111.
    Li X, Su G, Wang J et al (2013) Exogenous bFGF promotes articular cartilage repair via up-regulation of multiple growth factors. Osteoarthr Cartil 21:1567–1575. doi:10.1016/j.joca.2013.06.006 CrossRefGoogle Scholar
  112. 112.
    Liao J, Hu N, Zhou N et al (2014) Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation. PLoS ONE 9:e89025. doi:10.1371/journal.pone.0089025 CrossRefGoogle Scholar
  113. 113.
    Zhang Y, Kumagai K, Saito T (2014) Effect of parathyroid hormone on early chondrogenic differentiation from mesenchymal stem cells. J Orthop Surg Res 9:1–7. doi:10.1186/s13018-014-0068-5 CrossRefGoogle Scholar
  114. 114.
    Zhang W, Chen J, Zhang S, Ouyang HW (2012) Inhibitory function of parathyroid hormone-related protein on chondrocyte hypertrophy: the implication for articular cartilage repair. Arthritis Res Ther 14:221. doi:10.1186/ar4025 CrossRefGoogle Scholar
  115. 115.
    Wu XC, Huang B, Wang J et al (2013) Collagen-targeting parathyroid hormone-related peptide promotes collagen binding and in vitro chondrogenesis in bone marrow-derived MSCs. Int J Mol Med 31:430–436. doi:10.3892/ijmm.2012.1219 Google Scholar
  116. 116.
    Murphy MK, Huey DJ, Hu JC, Athanasiou KA (2014) TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 00:00. doi:10.1002/stem.1890 Google Scholar
  117. 117.
    Mariani E, Pulsatelli L, Facchini A (2014) Signaling pathways in cartilage repair. Int J Mol Sci 15:8667–8698. doi:10.3390/ijms15058667 CrossRefGoogle Scholar
  118. 118.
    Gurusinghe S, Strappe P (2014) Gene modification of mesenchymal stem cells and articular chondrocytes to enhance chondrogenesis. Biomed Res Int. doi:10.1155/2014/369528 Google Scholar
  119. 119.
    Croutze R, Jomha N, Uludag H, Adesida A (2013) Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskelet Disord 14:353. doi:10.1186/1471-2474-14-353 CrossRefGoogle Scholar
  120. 120.
    McNary S, Athanasiou K, Reddi AH (2013) Transforming growth factor beta-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A. doi:10.1089/ten.TEA.2013.0043 Google Scholar
  121. 121.
    Montaseri A, Busch F, Mobasheri A et al (2011) IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: Involvement of Src/PI-3k/AKT pathway. PLoS ONE. doi:10.1371/journal.pone.0028663 Google Scholar
  122. 122.
    Lee JM, Kim B-S, Lee H, Im G-I (2012) In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol Ther 20:1434–1442. doi:10.1038/mt.2012.60 CrossRefGoogle Scholar
  123. 123.
    Montoya F, Martínez F, García-Robles M et al (2013) Clinical and experimental approaches to knee cartilage lesion repair and mesenchymal stem cell chondrocyte differentiation. Biol Res 46:441–451. doi:10.4067/S0716-97602013000400015 CrossRefGoogle Scholar
  124. 124.
    Salzmann GM, Sah B, Südkamp NP, Niemeyer P (2013) Clinical outcome following the first-line, single lesion microfracture at the knee joint. Arch Orthop Trauma Surg 133:303–310. doi:10.1007/s00402-012-1660-y CrossRefGoogle Scholar
  125. 125.
    Xu X, Shi D, Shen Y et al (2015) Full-thickness cartilage defects are repaired via a microfracture technique and intra-articular injection of the small molecule compound kartogenin. Arthritis Res Ther. doi:10.1186/s13075-015-0537-1 Google Scholar
  126. 126.
    Goyal D, Keyhani S, Lee EH, Hui JHP (2013) Evidence-based status of microfracture technique: a systematic review of Level I and II studies. Arthrosc J Arthrosc Relat Surg 29:1579–1588. doi:10.1016/j.arthro.2013.05.027 CrossRefGoogle Scholar
  127. 127.
    Mobasheri A, Kalamegam G, Musumeci G, Batt ME (2014) Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 78:188–198. doi:10.1016/j.maturitas.2014.04.017 CrossRefGoogle Scholar
  128. 128.
    Pestka JM, Bode G, Salzmann G et al (2013) Clinical outcomes after cell-seeded autologous chondrocyte implantation of the knee: when can success or failure be predicted? Am J Sports Med 42:208–215. doi:10.1177/0363546513507768 CrossRefGoogle Scholar
  129. 129.
    Niemeyer P, Porichis S, Steinwachs M et al (2013) Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med. doi:10.1177/0363546513506593 Google Scholar
  130. 130.
    Minas T, Von Keudell A, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation knee. Clin Orthop Relat Res 472:41–51. doi:10.1007/s11999-013-3146-9 CrossRefGoogle Scholar
  131. 131.
    Trinh TQ, Harris JD, Siston RA, Flanigan DC (2013) Improved outcomes with combined autologous chondrocyte implantation and patellofemoral osteotomy versus isolated autologous chondrocyte implantation. Arthrosc J Arthrosc Relat Surg 29:566–574. doi:10.1016/j.arthro.2012.10.008 CrossRefGoogle Scholar
  132. 132.
    Filardo G, Kon E, Di MA et al (2012) Second-generation arthroscopic autologous chondrocyte implantation for the treatment of degenerative cartilage lesions. Knee Surg Sport Traumatol Arthrosc 20:1704–1713. doi:10.1007/s00167-011-1732-5 CrossRefGoogle Scholar
  133. 133.
    Kreuz PC, Müller S, von Keudell A et al (2013) Influence of sex on the outcome of autologous chondrocyte implantation in chondral defects of the knee. Am J Sports Med 41:1541–1548. doi:10.1177/0363546513489262 CrossRefGoogle Scholar
  134. 134.
    Caron MMJ, Emans PJ, Coolsen MME et al (2012) Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthr Cartil 20:1170–1178. doi:10.1016/j.joca.2012.06.016 CrossRefGoogle Scholar
  135. 135.
    Ebert JR, Smith A, Edwards PK et al (2013) Factors predictive of outcome 5 years after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. Am J Sports Med 41:1245–1254. doi:10.1177/0363546513484696 CrossRefGoogle Scholar
  136. 136.
    Ebert JR, Fallon M, Zheng MH et al (2012) A randomized trial comparing accelerated and traditional approaches to postoperative weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation: findings at 5 years. Am J Sports Med 40:1527–1537. doi:10.1177/0363546512445167 CrossRefGoogle Scholar
  137. 137.
    Ebert JR, Smith A, Fallon M et al (2014) Correlation between clinical and radiological outcomes after matrix-induced autologous chondrocyte implantation in the femoral condyles. Am J Sports Med 42:1857–1864. doi:10.1177/0363546514534942 CrossRefGoogle Scholar
  138. 138.
    Marlovits S, Aldrian S, Wondrasch B et al (2012) Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 40:2273–2280. doi:10.1177/0363546512457008 CrossRefGoogle Scholar
  139. 139.
    Edwards PK, Ackland TR, Ebert JR (2013) Accelerated weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint: early clinical and radiological outcomes. Am J Sports Med 41:2314–2324. doi:10.1177/0363546513495637 CrossRefGoogle Scholar
  140. 140.
    Saris D, Price A, Widuchowski W et al (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394. doi:10.1177/0363546514528093 CrossRefGoogle Scholar
  141. 141.
    Boeriu CG, Springer J, Kooy FK et al (2013) Production methods for hyaluronan. Int J Carbohydr Chem 2013:1–14. doi:10.1155/2013/624967 CrossRefGoogle Scholar
  142. 142.
    Saw K-Y, Anz A, Siew-Yoke Jee C et al (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 29:684–694. doi:10.1016/j.arthro.2012.12.008 CrossRefGoogle Scholar
  143. 143.
    Jang JD, Moon YS, Kim YS et al (2013) Novel repair technique for articular cartilage defect using a fibrin and hyaluronic acid mixture. Tissue Eng Regen Med 10:1–9. doi:10.1007/s13770-013-0361-0 CrossRefGoogle Scholar
  144. 144.
    Frith JE, Menzies DJ, Cameron AR et al (2014) Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials 35:1150–1162. doi:10.1016/j.biomaterials.2013.10.056 CrossRefGoogle Scholar
  145. 145.
    Meng F, He A, Zhang Z et al (2014) Chondrogenic differentiation of ATDC5 and hMSCs could be induced by a novel scaffold-tricalcium phosphate–collagen–hyaluronan without any exogenous growth factors in vitro. J Biomed Mater Res Part A 102:2725–2735. doi:10.1002/jbm.a.34948 CrossRefGoogle Scholar
  146. 146.
    Silva-Correia J, Correia SI, Oliveira JM, Reis RL (2013) Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv 31:1514–1531. doi:10.1016/j.biotechadv.2013.07.010 CrossRefGoogle Scholar
  147. 147.
    Tsaryk R, Silva-Correia J, Oliveira JM et al (2014) Biological performance of cell-encapsulated methacrylated gellan gum-based hydrogels for nucleus pulposus regeneration. J Tissue Eng Regen Med. doi:10.1002/term.1959 Google Scholar
  148. 148.
    Emans PJ, Peterson L (2014) Developing insights in cartilage repair. © Springer, London. doi:10.1007/978-1-4471-5385-6
  149. 149.
    Jeon JE, Schrobback K, Hutmacher DW, Klein TJ (2012) Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthr Cartil 20:906–915. doi:10.1016/j.joca.2012.04.019 CrossRefGoogle Scholar
  150. 150.
    Tatsumura M, Sakane M, Ochiai N, Mizuno S (2014) Off-loading of cyclic hydrostatic pressure promotes production of extracellular matrix by chondrocytes. Cells Tissues Organs. doi:10.1159/000360156 Google Scholar
  151. 151.
    Sadlik B, Wiewiorski M (2014) Implantation of a collagen matrix for an AMIC repair during dry arthroscopy. Knee Surg Sport Traumatol Arthrosc. doi:10.1007/s00167-014-3062-x Google Scholar
  152. 152.
    Dhollander A, Moens K, van der Mass J et al (2014) Treatment of patellofemoral cartilage defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Acta Orthop Belg 80:251–259Google Scholar
  153. 153.
    Piontek T, Ciemniewska-Gorzela K, Szulc A et al (2012) All-arthroscopic AMIC procedure for repair of cartilage defects of the knee. Knee Surg Sport Traumatol Arthrosc 20:922–925. doi:10.1007/s00167-011-1657-z CrossRefGoogle Scholar
  154. 154.
    Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136. doi:10.1146/annurev-bioeng-071812-152423 CrossRefGoogle Scholar
  155. 155.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science (80-) 338:917–921. doi:10.1126/science.1222454 CrossRefGoogle Scholar
  156. 156.
    Athanasiou KA, Responte DJ, Brown WE, Hu JC (2015) Harnessing biomechanics to develop cartilage regeneration strategies. J Biomech Eng 137:020901. doi:10.1115/1.4028825 CrossRefGoogle Scholar
  157. 157.
    Makris EA, MacBarb RF, Paschos NK et al (2014) Combined use of chondroitinase-ABC, TGF-β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials 35:6787–6796. doi:10.1016/j.biomaterials.2014.04.083 CrossRefGoogle Scholar
  158. 158.
    Makris EA, Hu JC, Athanasiou KA (2013) Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage. Osteoarthr Cartil 21:634–641. doi:10.1016/j.joca.2013.01.007 CrossRefGoogle Scholar
  159. 159.
    Makris EA, MacBarb RF, Responte DJ et al (2013) A copper sulfate and hydroxylysine treatment regimen for enhancing collagen cross-linking and biomechanical properties in engineered neocartilage. FASEB J 27:2421–2430. doi:10.1096/fj.12-224030 CrossRefGoogle Scholar
  160. 160.
    Murphy S, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):494–539CrossRefGoogle Scholar
  161. 161.
    Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699. doi:10.1109/TBME.2013.2243912 CrossRefGoogle Scholar
  162. 162.
    Conese M (2014) Bioprinting: a further step to effective regenerative medicine and tissue engineering. Adv Genet Eng 2:2–5. doi:10.4172/2169-0111.1000e112 Google Scholar
  163. 163.
    Gao G, Yonezawa T, Hubbell K, Dai GCX (2015) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J. doi:10.1002/biot.201400635.Submitted Google Scholar
  164. 164.
    Xu T, Binder KW, Albanna MZ et al (2013) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5:015001. doi:10.1088/1758-5082/5/1/015001 CrossRefGoogle Scholar
  165. 165.
    Cui X, Boland T, D’Lima D, Lotz M (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Patents Drug 6:149–155Google Scholar
  166. 166.
    Cui X, Gao G, Yonezawa T, Dai G (2014) Human cartilage tissue fabrication using three-dimensional inkjet printing technology. J Vis Exp. doi:10.3791/51294 Google Scholar
  167. 167.
    Santhagunam A, Madeira C, Cabral JMS (2012) Genetically engineered stem cell-based strategies for articular cartilage regeneration. Biotechnol Appl Biochem 59:121–131. doi:10.1002/bab.1016 CrossRefGoogle Scholar
  168. 168.
    Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM (2014) Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol 9:72–79. doi:10.1021/cb400713 CrossRefGoogle Scholar
  169. 169.
    Lu C-H, Lin K-J, Chiu H-Y et al (2012) Improved chondrogenesis and engineered cartilage formation from TGF-β3-expressing adipose-derived stem cells cultured in the rotating-shaft bioreactor. Tissue Eng Part A 18:2114–2124. doi:10.1089/ten.tea.2012.0010 CrossRefGoogle Scholar
  170. 170.
    Madry H, Kaul G, Zurakowski D et al (2013) Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cells Mater 25:229–247Google Scholar
  171. 171.
    Hu Y-C (2014) Gene Therapy for Cartilage and Bone Tissue Engineering. Gene Ther Cartil Bone Tissue Eng 2:1–15. doi:10.1007/978-3-642-53923-7 CrossRefGoogle Scholar
  172. 172.
    Madeira C, Santhagunam A, Salgueiro JB, Cabral JMS (2015) Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol 33:35–42. doi:10.1016/j.tibtech.2014.11.003 CrossRefGoogle Scholar
  173. 173.
    Brunger JM, Huynh NPT, Guenther CM et al (2014) Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci USA 111:E798–E806. doi:10.1073/pnas.1321744111 CrossRefGoogle Scholar
  174. 174.
    Cucchiarini M, Madry H (2014) Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther 21:1–9. doi:10.1038/gt.2014.58 CrossRefGoogle Scholar
  175. 175.
    Cucchiarini M, Orth P, Madry H (2013) Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J Mol Med 91:625–636. doi:10.1007/s00109-012-0978-9 CrossRefGoogle Scholar
  176. 176.
    Goodrich LR, Phillips JN, McIlwraith CW et al (2013) Optimization of scAAVIL-1ra in vitro and in vivo to deliver high levels of therapeutic protein for treatment of osteoarthritis. Mol Ther Nucleic Acids 2:e70. doi:10.1038/mtna.2012.61 CrossRefGoogle Scholar
  177. 177.
    Ha C-W, Noh MJ, Choi KB, Lee KH (2012) Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy 14:247–256. doi:10.3109/14653249.2011.629645 CrossRefGoogle Scholar
  178. 178.
    Li X, Ellman MB, Kroin JS et al (2012) Species-specific biological effects of FGF-2 in articular cartilage: implication for distinct roles within the FGF receptor family. J Cell Biochem 113:2532–2542. doi:10.1002/jcb.24129 CrossRefGoogle Scholar
  179. 179.
    Watson R, Broome T, Levings P et al (2013) scAAV-mediated gene transfer of Interleukin 1-receptor antagonist to synovium and articular cartilage in large mammalian joints. Gene Ther 20:670–677. doi:10.1038/gt.2012.81.scAAV-Mediated CrossRefGoogle Scholar
  180. 180.
    Gascón AR, del Pozo-Rodríguez A, Solinís MÁ (2014) Non-viral delivery systems in gene therapy. Gene Ther Tools Potential Appl. doi:10.5772/52704 Google Scholar
  181. 181.
    He CX, Zhang TY, Miao PH et al (2012) TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 59:163–169. doi:10.1002/bab.1001 CrossRefGoogle Scholar
  182. 182.
    Oliveira PH, Mairhofer J (2013) Marker-free plasmids for biotechnological applications—implications and perspectives. Trends Biotechnol 31:539–547. doi:10.1016/j.tibtech.2013.06.001 CrossRefGoogle Scholar
  183. 183.
    Li P, Wei X, Guan Y et al (2014) MicroRNA-1 regulates chondrocyte phenotype by repressing histone deacetylase 4 during growth plate development. FASEB J 28:3930–3941. doi:10.1096/fj.13-249318 CrossRefGoogle Scholar
  184. 184.
    Qi B, Yu A, Zhu S et al (2013) Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-β1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med (Maywood) 238:23–30. doi:10.1258/ebm.2012.012223 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alain da Silva Morais
    • 1
    • 2
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoS. Claudio de Barco, GuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations