• Marta OndrésikEmail author
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)


Osteoarthritis (OA) is the most common form of arthritis and the most relevant musculoskeletal disorder worldwide. It is considered to be a joint degenerative disease with imbalanced homeostasis. It can potentially affect any joint in the body, but most often the knees, hip, hand and the lower back suffers from OA. Due to the strong functional association of the joint components OA affects all tissues, present in the joint to a certain degree. Because of its wide occurrence, and great impact on the society OA receives a lot of attention in clinical research, although the molecular background of OA remains incompletely understood. The complexity of the joint structure, and the limited knowledge we have on OA sets many obstacles to the development of effective therapies. As of current state there is no cure for OA.


Articular Cartilage Subchondral Bone Chondrocyte Hypertrophy Osteophyte Formation Calcify Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goldring MB (2012) Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther Adv Musculoskelet Dis 4:269–285. doi: 10.1177/1759720X12448454 CrossRefGoogle Scholar
  2. 2.
    Murphy L, Schwartz TA, Helmick CG et al (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 59:1207–1213. doi: 10.1002/art.24021 CrossRefGoogle Scholar
  3. 3.
    Neogi T (2013) The epidemiology and impact of pain in osteoarthritis. Osteoarthr Cartil 21:1145–1153. doi: 10.1016/j.joca.2013.03.018 CrossRefGoogle Scholar
  4. 4.
    Valdes AM, Spector TD (2010) The clinical relevance of genetic susceptibility to osteoarthritis. Best Pract Res Clin Rheumatol 24:3–14. doi: 10.1016/j.berh.2009.08.005 CrossRefGoogle Scholar
  5. 5.
    Kapoor M, Martel-Pelletier J, Lajeunesse D et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7:33–42. doi: 10.1038/nrrheum.2010.196 CrossRefGoogle Scholar
  6. 6.
    Pelletier JP, Martel-Pelletier J, Ghandur-Mnaymneh L et al (1985) Role of synovial membrane inflammation in cartilage matrix breakdown in the Pond-Nuki dog model of osteoarthritis. Arthritis Rheum 28:554–561CrossRefGoogle Scholar
  7. 7.
    Felson DT (2014) Osteoarthritis: priorities for osteoarthritis research: much to be done. Nat Rev Rheumatol 10:447–448. doi: 10.1038/nrrheum.2014.76 CrossRefGoogle Scholar
  8. 8.
    Lawrence RC (2008) NIH public access. Arthritis Rheum 58:26–35. doi: 10.1002/art.23176.Estimates CrossRefGoogle Scholar
  9. 9.
    Kurtz S, Ong K, Lau E, Manley M (2011) Current and projected utilization of total joint replacements. Compr Biomater 6:1–9CrossRefGoogle Scholar
  10. 10.
    Lohmander LS (2013) Knee replacement for osteoarthritis: facts, hopes, and fears. Medicographia 35:181–188Google Scholar
  11. 11.
    Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–2196. doi: 10.1016/S0140-6736(12)61729-2 CrossRefGoogle Scholar
  12. 12.
    Murray CJL, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457. doi: 10.1056/NEJMra1201534 CrossRefGoogle Scholar
  13. 13.
    Puig-Junoy J, Ruiz Zamora A (2015) Socio-economic costs of osteoarthritis: a systematic review of cost-of-illness studies. Semin Arthritis Rheum 44:531–541. doi: 10.1016/j.semarthrit.2014.10.012 CrossRefGoogle Scholar
  14. 14.
    Haq SA, Davatchi F (2011) Osteoarthritis of the knees in the COPCORD world. Int J Rheum Dis 14:122–129. doi: 10.1111/j.1756-185X.2011.01615.x CrossRefGoogle Scholar
  15. 15.
    Bitton R (2009) The economic burden of osteoarthritis. Am J Manag Care 15:S230–S235. doi: 10.1002/art.1780290311 Google Scholar
  16. 16.
    Gupta S, Hawker GA, Laporte A et al (2005) The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology 44:1531–1537. doi: 10.1093/rheumatology/kei049 CrossRefGoogle Scholar
  17. 17.
    Vos T, Barber RM, Bell B et al (2015) Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. doi: 10.1016/S0140-6736(15)60692-4 Google Scholar
  18. 18.
    Hunter DJ, Schofield D, Callander E (2014) The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 10:437–441. doi: 10.1038/nrrheum.2014.44 Google Scholar
  19. 19.
    Hiligsmann M, Cooper C, Guillemin F et al (2014) A reference case for economic evaluations in osteoarthritis: an expert consensus article from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 44:271–282. doi: 10.1016/j.semarthrit.2014.06.005 CrossRefGoogle Scholar
  20. 20.
    Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15:375. doi: 10.1007/s11926-013-0375-6 CrossRefGoogle Scholar
  21. 21.
    Van Donkelaar CC, Wilson W (2012) Mechanics of chondrocyte hypertrophy. Biomech Model Mechanobiol 11:655–664. doi: 10.1007/s10237-011-0340-0 CrossRefGoogle Scholar
  22. 22.
    Van der Kraan PM, van den Berg WB (2012) Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil 20:223–232. doi: 10.1016/j.joca.2011.12.003 CrossRefGoogle Scholar
  23. 23.
    Wei F, Zhou J, Wei X et al (2012) Activation of Indian hedgehog promotes chondrocyte hypertrophy and upregulation of MMP-13 in human osteoarthritic cartilage. Osteoarthr Cartil 20:755–763. doi: 10.1016/j.joca.2012.03.010 CrossRefGoogle Scholar
  24. 24.
    Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44. doi: 10.1002/jcb.20652 CrossRefGoogle Scholar
  25. 25.
    Jansen H, Meffert RH, Birkenfeld F et al (2012) Detection of vascular endothelial growth factor (VEGF) in moderate osteoarthritis in a rabbit model. Ann Anat 194:452–456. doi: 10.1016/j.aanat.2012.01.006 CrossRefGoogle Scholar
  26. 26.
    Huebner JL, Johnson KA, Kraus VB, Terkeltaub RA (2009) Transglutaminase 2 is a marker of chondrocyte hypertrophy and osteoarthritis severity in the Hartley guinea pig model of knee OA. Osteoarthr Cartil 17:1056–1064. doi: 10.1016/j.joca.2009.02.015 CrossRefGoogle Scholar
  27. 27.
    Pfander D, Swoboda B, Kirsch T (2001) Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am J Pathol 159:1777–1783. doi: 10.1016/S0002-9440(10)63024-6 CrossRefGoogle Scholar
  28. 28.
    Pulsatelli L, Addimanda O, Brusi V et al (2012) New findings in osteoarthritis pathogenesis: therapeutic implications. Ther Adv Chronic Dis 4(1):23–43. doi: 10.1177/2040622312462734 CrossRefGoogle Scholar
  29. 29.
    Maldonado M, Nam J (2013) The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. doi: 10.1155/2013/284873 Google Scholar
  30. 30.
    Brew CJ, Clegg PD, Boot-Handford RP et al (2010) Gene expression in human chondrocytes in late osteoarthritis is changed in both fibrillated and intact cartilage without evidence of generalised chondrocyte hypertrophy. Ann Rheum Dis 69:234–240. doi: 10.1136/ard.2008.097139 CrossRefGoogle Scholar
  31. 31.
    Heinegård D, Saxne T (2011) The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 7:50–56. doi: 10.1038/nrrheum.2010.198 CrossRefGoogle Scholar
  32. 32.
    Sandy JD, Verscharen C (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem J 358:615–626CrossRefGoogle Scholar
  33. 33.
    Stanton H, Melrose J, Little CB, Fosang AJ (2011) Proteoglycan degradation by the ADAMTS family of proteinases. Biochim Biophys Acta Mol Basis Dis 1812:1616–1629. doi: 10.1016/j.bbadis.2011.08.009 CrossRefGoogle Scholar
  34. 34.
    Melrose J, Fuller ES, Roughley PJ et al (2008) Fragmentation of decorin, biglycan, lumican and keratocan is elevated in degenerate human meniscus, knee and hip articular cartilages compared with age-matched macroscopically normal and control tissues. Arthritis Res Ther 10:R79. doi: 10.1186/ar2453 CrossRefGoogle Scholar
  35. 35.
    Gendron C, Kashiwagi M, Lim NH et al (2007) Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4. J Biol Chem 282:18294–18306. doi: 10.1074/jbc.M701523200 CrossRefGoogle Scholar
  36. 36.
    Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329CrossRefGoogle Scholar
  37. 37.
    Little CB, Meeker CT, Golub SB et al (2007) Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 117:1627–1636. doi: 10.1172/JCI30765 CrossRefGoogle Scholar
  38. 38.
    Lohmander LS, Atley LM, Pietka TA, Eyre DR (2003) The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 48:3130–3139. doi: 10.1002/art.11326 CrossRefGoogle Scholar
  39. 39.
    Sandy JD, Flannery CR, Neame PJ, Lohmander LS (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest 89:1512–1516. doi: 10.1172/JCI115742 CrossRefGoogle Scholar
  40. 40.
    Bank RA, Soudry M, Maroudas A et al (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43:2202–2210. doi: 10.1002/1529-0131(200010)43:10<2202:AID-ANR7>3.0.CO;2-E CrossRefGoogle Scholar
  41. 41.
    Billinghurst RC, Dahlberg L, Ionescu M et al (1997) Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 99:1534–1545. doi: 10.1172/JCI119316 CrossRefGoogle Scholar
  42. 42.
    Tardif G, Pelletier JP, Dupuis M et al (1999) Collagenase 3 production by human osteoarthritic chondrocytes in response to growth factors and cytokines is a function of the physiologic state of the cells. Arthritis Rheum 42:1147–1158. doi: 10.1002/1529-0131(199906)42:6<1147:AID-ANR11>3.0.CO;2-Y CrossRefGoogle Scholar
  43. 43.
    Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160Google Scholar
  44. 44.
    Ra H-J, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26:587–596. doi: 10.1016/j.matbio.2007.07.001 CrossRefGoogle Scholar
  45. 45.
    Dreier R, Grässel S, Fuchs S et al (2004) Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res 297:303–312. doi: 10.1016/j.yexcr.2004.02.027 CrossRefGoogle Scholar
  46. 46.
    Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE 3:e3740. doi: 10.1371/journal.pone.0003740 CrossRefGoogle Scholar
  47. 47.
    Reboul P, Pelletier J, Tardif G, ​Cloutier JM, ​Martel-Pelletier J (1996) The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. J Clin Invest 97(9):2011–2019. doi: 10.1172/JCI118636
  48. 48.
    Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145. doi: 10.1016/j.bbapap.2011.06.020 CrossRefGoogle Scholar
  49. 49.
    Yang C-C, Lin C-Y, Wang H-S, Lyu S-R (2013) Matrix metalloproteases and tissue inhibitors of metalloproteinases in medial plica and pannus-like tissue contribute to knee osteoarthritis progression. PLoS ONE 8:e79662. doi: 10.1371/journal.pone.0079662 CrossRefGoogle Scholar
  50. 50.
    Goldring MB, Marcu KB (2009) Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther 11:224. doi: 10.1186/ar2592 CrossRefGoogle Scholar
  51. 51.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839. doi: 10.1161/01.RES.0000070112.80711.3D CrossRefGoogle Scholar
  52. 52.
    Zhang F, Yu W, Luo W et al (2014) Effect of osteopontin on TIMP-1 and TIMP-2 mRNA in chondrocytes of human knee osteoarthritis in vitro. Exp Ther Med 8:391–394Google Scholar
  53. 53.
    Mi M, Shi S, Li T et al (2012) TIMP2 deficient mice develop accelerated osteoarthritis via promotion of angiogenesis upon destabilization of the medial meniscus. Biochem Biophys Res Commun 423:366–372. doi: 10.1016/j.bbrc.2012.05.132 CrossRefGoogle Scholar
  54. 54.
    Miosge N, Hartmann M, Maelicke C, Herken R (2004) Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem Cell Biol 122:229–236. doi: 10.1007/s00418-004-0697-6 CrossRefGoogle Scholar
  55. 55.
    Brandt KD, Myers SL, Burr D, Albrecht M (1991) Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 34:1560–1570CrossRefGoogle Scholar
  56. 56.
    Felson DT, Neogi T (2004) Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum 50:341–344. doi: 10.1002/art.20051 CrossRefGoogle Scholar
  57. 57.
    Aigner T, Fundel K, Saas J et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54:3533–3544. doi: 10.1002/art.22174 CrossRefGoogle Scholar
  58. 58.
    Blanco FJ, Ochs RL, Schwarz H, Lotz M (1995) Chondrocyte apoptosis induced by nitric oxide. Am J Pathol 146:75–85Google Scholar
  59. 59.
    López-Armada MJ, Caramés B, Lires-Deán M et al (2006) Cytokines, tumor necrosis factor-alpha and interleukin-1beta, differentially regulate apoptosis in osteoarthritis cultured human chondrocytes. Osteoarthr Cartil 14:660–669. doi: 10.1016/j.joca.2006.01.005 CrossRefGoogle Scholar
  60. 60.
    Kong D, Zheng T, Zhang M et al (2013) Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS ONE 8:1–10. doi: 10.1371/journal.pone.0069403 Google Scholar
  61. 61.
    Zamli Z, Sharif M (2011) Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int J Rheum Dis 14:159–166. doi: 10.1111/j.1756-185X.2011.01618.x CrossRefGoogle Scholar
  62. 62.
    Tait SWG, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. doi: 10.1038/nrm2952 CrossRefGoogle Scholar
  63. 63.
    Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169. doi: 10.1038/nrrheum.2010.213 CrossRefGoogle Scholar
  64. 64.
    Intekhab-Alam NY, White OB, Getting SJ et al (2013) Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis? Cell Death Dis 4:e717. doi: 10.1038/cddis.2013.231 CrossRefGoogle Scholar
  65. 65.
    Csaki C, Mobasheri A, Shakibaei M (2009) Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis. Arthritis Res Ther 11:R165. doi: 10.1186/ar2850 CrossRefGoogle Scholar
  66. 66.
    Henrotin Y, Priem F, Mobasheri A (2013) Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus 2:56. doi: 10.1186/2193-1801-2-56 CrossRefGoogle Scholar
  67. 67.
    Li W, Cai L, Zhang Y et al (2015) Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J Orthop Res. doi: 10.1002/jor.22859 Google Scholar
  68. 68.
    Wang J, Gao J-S, Chen J-W et al (2012) Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatol Int 32:1541–1548. doi: 10.1007/s00296-010-1720-y CrossRefGoogle Scholar
  69. 69.
    Švajger U, Jeras M (2012) Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int Rev Immunol 31:202–222. doi: 10.3109/08830185.2012.665108 CrossRefGoogle Scholar
  70. 70.
    Riveiro-Naveira RR, Loureiro J, Valcárcel-Ares MN et al (2014) Anti-inflammatory effect of resveratrol as a dietary supplement in an antigen-induced arthritis rat model. Osteoarthr Cartil 22:S290. doi: 10.1016/j.joca.2014.02.539 CrossRefGoogle Scholar
  71. 71.
    Pfander D, Rahmanzadeh R, Scheller EE (1999) Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol 26:386–394Google Scholar
  72. 72.
    Veje K, Hyllested-Winge JL, Ostergaard K (2003) Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis. Osteoarthr Cartil 11:217–227CrossRefGoogle Scholar
  73. 73.
    Hayami T, Funaki H, Yaoeda K et al (2003) Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol 30:2207–2217Google Scholar
  74. 74.
    Henrotin Y, Pesesse L, Sanchez C (2012) Subchondral bone and osteoarthritis: biological and cellular aspects. Osteoporos Int 23(Suppl 8):S847–S851. doi: 10.1007/s00198-012-2162-z CrossRefGoogle Scholar
  75. 75.
    Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12. doi: 10.1016/j.csm.2004.08.007 CrossRefGoogle Scholar
  76. 76.
    Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40:135–163. doi: 10.1016/j.proghi.2006.02.003 CrossRefGoogle Scholar
  77. 77.
    Little CB, Ghosh P, Bellenger CR (1996) Topographic variation in biglycan and decorin synthesis by articular cartilage in the early stages of osteoarthritis: an experimental study in sheep. J Orthop Res 14:433–444. doi: 10.1002/jor.1100140314 CrossRefGoogle Scholar
  78. 78.
    Matyas JR, Huang D, Chung M, Adams ME (2002) Regional quantification of cartilage type II collagen and aggrecan messenger RNA in joints with early experimental osteoarthritis. Arthritis Rheum 46:1536–1543. doi: 10.1002/art.10331 CrossRefGoogle Scholar
  79. 79.
    Matyas JR, Ehlers PF, Huang D, Adams ME (1999) The early molecular natural history of experimental osteoarthritis. I. Progressive discoordinate expression of aggrecan and type II procollagen messenger RNA in the articular cartilage of adult animals. Arthritis Rheum 42:993–1002. doi: 10.1002/1529-0131(199905)42:5<993:AID-ANR19>3.0.CO;2-U CrossRefGoogle Scholar
  80. 80.
    Young AA, Smith MM, Smith SM et al (2005) Regional assessment of articular cartilage gene expression and small proteoglycan metabolism in an animal model of osteoarthritis. Arthritis Res Ther 7:R852–R861. doi: 10.1186/ar1756 CrossRefGoogle Scholar
  81. 81.
    Adams ME, Matyas JR, Huang D, Dourado GS (1995) Expression of proteoglycans and collagen in the hypertrophic phase of experimental osteoarthritis. J Rheumatol Suppl 43:94–97Google Scholar
  82. 82.
    Lorenz H, Wenz W, Ivancic M et al (2005) Early and stable upregulation of collagen type II, collagen type I and YKL40 expression levels in cartilage during early experimental osteoarthritis occurs independent of joint location and histological grading. Arthritis Res Ther 7:R156–R165. doi: 10.1186/ar1471 CrossRefGoogle Scholar
  83. 83.
    Bluteau G, Conrozier T, Mathieu P et al (2001) Matrix metalloproteinase-1, -3, -13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta 1526:147–158CrossRefGoogle Scholar
  84. 84.
    Aigner T, Zien A, Gehrsitz A et al (2001) Anabolic and catabolic gene expression pattern analysis in normal versus osteoarthritic cartilage using complementary DNA-array technology. Arthritis Rheum 44:2777–2789CrossRefGoogle Scholar
  85. 85.
    Le Graverand M-PH, Eggerer J, Vignon E et al (2002) Assessment of specific mRNA levels in cartilage regions in a lapine model of osteoarthritis. J Orthop Res 20:535–544. doi: 10.1016/S0736-0266(01)00126-7 CrossRefGoogle Scholar
  86. 86.
    Akizuki S, Mow VC, Muller F et al (1987) Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res 5:173–186. doi: 10.1002/jor.1100050204 CrossRefGoogle Scholar
  87. 87.
    Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258CrossRefGoogle Scholar
  88. 88.
    Setton LA, Mow VC, Müller FJ et al (1994) Mechanical properties of canine articular cartilage are significantly altered following transection of the anterior cruciate ligament. J Orthop Res 12:451–463. doi: 10.1002/jor.1100120402 CrossRefGoogle Scholar
  89. 89.
    Goldring SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4:249–258. doi: 10.1177/1759720X12437353 CrossRefGoogle Scholar
  90. 90.
    Lories RJ, Luyten FP (2011) The bone–cartilage unit in osteoarthritis. Nat Rev Rheumatol 7:43–49. doi: 10.1038/nrrheum.2010.197 CrossRefGoogle Scholar
  91. 91.
    Pan J, Wang B, Li W et al (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51:212–217. doi: 10.1016/j.bone.2011.11.030 CrossRefGoogle Scholar
  92. 92.
    Radin EL, Paul IL (1970) Does cartilage compliance reduce skeletal impact loads?. the relative force-attenuating properties of articular cartilage, synovial fluid, periarticular soft tissues and bone. Arthritis Rheum 13:139–144. doi: 10.1002/art.1780130206 CrossRefGoogle Scholar
  93. 93.
    Roemer FW, Neogi T, Nevitt MC et al (2010) Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil 18:47–53. doi: 10.1016/j.joca.2009.08.018 CrossRefGoogle Scholar
  94. 94.
    Lewis CW, Williamson AK, Chen AC et al (2005) Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands. Am J Vet Res 66:1823–1829CrossRefGoogle Scholar
  95. 95.
    Seah S, Wheaton D, Li L et al (2012) The relationship of tibial bone perfusion to pain in knee osteoarthritis. Osteoarthr Cartil 20:1527–1533. doi: 10.1016/j.joca.2012.08.025 CrossRefGoogle Scholar
  96. 96.
    Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651. doi: 10.1359/jbmr.1997.12.4.641 CrossRefGoogle Scholar
  97. 97.
    Gelse K, Söder S, Eger W et al (2003) Osteophyte development—molecular characterization of differentiation stages. Osteoarthr Cartil 11:141–148CrossRefGoogle Scholar
  98. 98.
    Van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthr Cartil 15:237–244. doi: 10.1016/j.joca.2006.11.006 CrossRefGoogle Scholar
  99. 99.
    Hashimoto S, Creighton-Achermann L, Takahashi K et al (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 10:180–187. doi: 10.1053/joca.2001.0505 CrossRefGoogle Scholar
  100. 100.
    Blom AB, van Lent PLEM, Holthuysen AEM et al (2004) Synovial lining macrophages mediate osteophyte formation during experimental osteoarthritis. Osteoarthr Cartil 12:627–635. doi: 10.1016/j.joca.2004.03.003 CrossRefGoogle Scholar
  101. 101.
    Kishimoto K, Kitazawa R, Kurosaka M et al (2006) Expression profile of genes related to osteoclastogenesis in mouse growth plate and articular cartilage. Histochem Cell Biol 125:593–602. doi: 10.1007/s00418-005-0103-z CrossRefGoogle Scholar
  102. 102.
    Neve A, Cantatore FP, Corrado A et al (2013) In vitro and in vivo angiogenic activity of osteoarthritic and osteoporotic osteoblasts is modulated by VEGF and vitamin D3 treatment. Regul Pept 184:81–84. doi: 10.1016/j.regpep.2013.03.014 CrossRefGoogle Scholar
  103. 103.
    Yuan Q, Sun L, Li J-J, An C-H (2014) Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord 15:437. doi: 10.1186/1471-2474-15-437 CrossRefGoogle Scholar
  104. 104.
    Mobasheri A, Matta C, Zákány R, Musumeci G (2015) Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 80:237–244. doi: 10.1016/j.maturitas.2014.12.003 CrossRefGoogle Scholar
  105. 105.
    Ellman MB, Yan D, Chen D, Im H (2012) Biochemical mediators involved in cartilage degradation and the induction of pain in osteoarthritis. In: Rothschild BM (ed) Princ. osteoarthritis—its defin. character, deriv. modality-related recognit. InTech, pp 367–399Google Scholar
  106. 106.
    Clarke C, Held A, Stange R et al (2015) A4.11 Syndecan-4 is an important player in regulating the WNT signalling pathway in articular cartilage. Ann Rheum Dis 74:A40–A41. doi: 10.1136/annrheumdis-2015-207259.93 CrossRefGoogle Scholar
  107. 107.
    Funck-Brentano T, Bouaziz W, Marty C et al (2014) Dkk-1-mediated inhibition of Wnt signaling in bone ameliorates osteoarthritis in mice. Arthritis Rheumatol (Hoboken, NJ) 66:3028–3039. doi: 10.1002/art.38799 CrossRefGoogle Scholar
  108. 108.
    Leijten JCH, Emons J, Sticht C et al (2012) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64:3302–3312. doi: 10.1002/art.34535 CrossRefGoogle Scholar
  109. 109.
    Chan BY, Fuller ES, Russell AK et al (2011) Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis. Osteoarthr Cartil 19:874–885. doi: 10.1016/j.joca.2011.04.014 CrossRefGoogle Scholar
  110. 110.
    Papathanasiou I, Malizos KN, Tsezou A (2012) Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes. Arthritis Res Ther 14:R82. doi: 10.1186/ar3805 CrossRefGoogle Scholar
  111. 111.
    Van Der Kraan PM, Davidson ENB, Blom A, Van Den Berg W (2009) Review TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis Modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 17:1539–1545. doi: 10.1016/j.joca.2009.06.008 CrossRefGoogle Scholar
  112. 112.
    Zhen G, Wen C, Jia X et al (2013) Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712. doi: 10.1038/nm.3143 CrossRefGoogle Scholar
  113. 113.
    Blaney Davidson EN, Vitters EL, van der Kraan PM, van den Berg WB (2006) Expression of transforming growth factor- (TGF) and the TGF signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis 65:1414–1421. doi: 10.1136/ard.2005.045971 CrossRefGoogle Scholar
  114. 114.
    Scharstuhl A, Glansbeek HL, van Beuningen HM et al (2002) Inhibition of endogenous TGF—during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169:507–514. doi: 10.4049/jimmunol.169.1.507 CrossRefGoogle Scholar
  115. 115.
    Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146CrossRefGoogle Scholar
  116. 116.
    Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102:18023–18027. doi: 10.1073/pnas.0503617102 CrossRefGoogle Scholar
  117. 117.
    Sharma AR, Jagga S, Lee S-S, Nam J-S (2013) Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci 14:19805–19830. doi: 10.3390/ijms141019805 CrossRefGoogle Scholar
  118. 118.
    Wozney JM, Rosen V (1998) Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res 346:26–37CrossRefGoogle Scholar
  119. 119.
    Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop Relat Res 324:29–38CrossRefGoogle Scholar
  120. 120.
    Hayashi M, Muneta T, Ju Y-J et al (2008) Weekly intra-articular injections of bone morphogenetic protein-7 inhibits osteoarthritis progression. Arthritis Res Ther 10:R118. doi: 10.1186/ar2521 CrossRefGoogle Scholar
  121. 121.
    Hunter DJ, Pike MC, Jonas BL et al (2010) Phase 1 safety and tolerability study of BMP-7 in symptomatic knee osteoarthritis. BMC Musculoskelet Disord 11:232. doi: 10.1186/1471-2474-11-232 CrossRefGoogle Scholar
  122. 122.
    Blaney Davidson EN, Vitters EL, van Lent PLEM et al (2007) Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res Ther 9:R102. doi: 10.1186/ar2305 CrossRefGoogle Scholar
  123. 123.
    Blaney Davidson EN, Vitters EL, Bennink MB et al (2014) Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage. Ann Rheum Dis 74(6):1257–1264. doi: 10.1136/annrheumdis-2013-204528 CrossRefGoogle Scholar
  124. 124.
    Smeets TJM, Barg EC, Kraan MC et al (2003) Analysis of the cell infiltrate and expression of proinflammatory cytokines and matrix metalloproteinases in arthroscopic synovial biopsies: comparison with synovial samples from patients with end stage, destructive rheumatoid arthritis. Ann Rheum Dis 62:635–638CrossRefGoogle Scholar
  125. 125.
    Smith MD, Triantafillou S, Parker A et al (1997) Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 24:365–371Google Scholar
  126. 126.
    Tchetina EV, Squires G, Poole AR (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32:876–886Google Scholar
  127. 127.
    Orita S, Koshi T, Mitsuka T et al (2011) Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 12:144. doi: 10.1186/1471-2474-12-144 CrossRefGoogle Scholar
  128. 128.
    Furman BD, Mangiapani DS, Zeitler E et al (2014) Targeting pro-inflammatory cytokines following joint injury: acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res Ther 16:R134. doi: 10.1186/ar4591 CrossRefGoogle Scholar
  129. 129.
    Imagawa K, de Andrés MC, Hashimoto K et al (2011) The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes–implications for osteoarthritis. Biochem Biophys Res Commun 405:362–367. doi: 10.1016/j.bbrc.2011.01.007 CrossRefGoogle Scholar
  130. 130.
    Niederberger E, Geisslinger G (2008) The IKK-NF-kappaB pathway: a source for novel molecular drug targets in pain therapy? FASEB J 22:3432–3442. doi: 10.1096/fj.08-109355 CrossRefGoogle Scholar
  131. 131.
    Rigoglou S, Papavassiliou AG (2013) The NF-kB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45:2580–2584. doi: 10.1016/j.biocel.2013.08.018 CrossRefGoogle Scholar
  132. 132.
    Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS (2001) Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem 276:22382–22387. doi: 10.1074/jbc.M100938200 CrossRefGoogle Scholar
  133. 133.
    Gomes WF, Lacerda ACR, Mendonça VA et al (2012) Effect of aerobic training on plasma cytokines and soluble receptors in elderly women with knee osteoarthritis, in response to acute exercise. Clin Rheumatol 31:759–766. doi: 10.1007/s10067-011-1927-7 CrossRefGoogle Scholar
  134. 134.
    Messier SP, Mihalko SL, Legault C et al (2013) Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310:1263–1273. doi: 10.1001/jama.2013.277669 CrossRefGoogle Scholar
  135. 135.
    Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384. doi: 10.1016/j.berh.2008.02.001 CrossRefGoogle Scholar
  136. 136.
    Lee AS, Ellman MB, Yan D et al (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527:440–447. doi: 10.1016/j.gene.2013.05.069 CrossRefGoogle Scholar
  137. 137.
    Haseeb A, Haqqi TM (2013) Immunopathogenesis of osteoarthritis. Clin Immunol 146:185–196. doi: 10.1016/j.clim.2012.12.011 CrossRefGoogle Scholar
  138. 138.
    Borzi RM, Mazzetti I, Macor S et al (1999) Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett 455:238–242CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marta Ondrésik
    • 1
    • 2
    Email author
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations