Knee Articular Cartilage

  • Marta Ondrésik
  • Joaquim Miguel Oliveira
  • Rui Luís Reis
Chapter
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 21)

Abstract

Articular cartilage (AC) is vital for the proper functioning of the knee. This smooth white connective tissue covers the joint surfaces and allows pain free movement for decades. Its high durability originates from its unique structure mainly composed of cells, macromolecules and water. The same structure allows the cartilage to transmit the load and act like a cushion in the harsh mechanical environment of the body’s largest joint. Herein, it is discussed the origin, function and structure of knee AC. After briefly discussing its embryological development, the biochemistry and the related biomechanical properties of AC are also overviewed. The tissue components will be individually described and its role in the cartilage will be explained. It is also reviewed the different mechanical behaviours of the tissue. Finally, AC tissue homeostasis and maintenance is discussed, which is still somewhat requires a deeper knowledge. The anabolic and catabolic processes, namely tissue synthesis and degradation and the involved molecules and signalling pathways are also subjects that have been addressed in the current chapter.

References

  1. 1.
    Wu L, Bluguermann C, Kyupelyan L et al (2013) Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Rep 1:575–589. doi:10.1016/j.stemcr.2013.10.012 CrossRefGoogle Scholar
  2. 2.
    Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol 39:115–127Google Scholar
  3. 3.
    Mitrovic D (1978) Development of the diarthrodial joints in the rat embryo. Am J Anat 151:475–485. doi:10.1002/aja.1001510403 CrossRefGoogle Scholar
  4. 4.
    Zimmermann B (1984) Assembly and disassembly of gap junctions during mesenchymal cell condensation and early chondrogenesis in limb buds of mouse embryos. J Anat 138(Pt 2):351–363Google Scholar
  5. 5.
    Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryol Today 75:200–212. doi:10.1002/bdrc.20048 CrossRefGoogle Scholar
  6. 6.
    Macsai CE, Foster BK, Xian CJ (2008) Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair. J Cell Physiol 215:578–587. doi:10.1002/jcp.21342 CrossRefGoogle Scholar
  7. 7.
    Minina E, Kreschel C, Naski MC et al (2002) Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 3:439–449CrossRefGoogle Scholar
  8. 8.
    Kobayashi T, Lyons KM, McMahon AP, Kronenberg HM (2005) BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci USA 102:18023–18027. doi:10.1073/pnas.0503617102 CrossRefGoogle Scholar
  9. 9.
    Wu X, Shi W, Cao X (2007) Multiplicity of BMP signaling in skeletal development. Ann NY Acad Sci 1116:29–49. doi:10.1196/annals.1402.053 CrossRefGoogle Scholar
  10. 10.
    Haque T, Nakada S, Hamdy RC (2007) A review of FGF18: its expression, signaling pathways and possible functions during embryogenesis and post-natal development. Histol Histopathol 22:97–105Google Scholar
  11. 11.
    Stockwell RA (1979) Biology of cartilage cells. Cambridge University Press, Cambridge, 329 p; illustratedGoogle Scholar
  12. 12.
    Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24:1–12. doi:10.1016/j.csm.2004.08.007 CrossRefGoogle Scholar
  13. 13.
    Archer CW, Francis-West P (2003) The chondrocyte. Int J Biochem Cell Biol 35:401–404. doi:10.1016/S1357-2725(02)00301-1 CrossRefGoogle Scholar
  14. 14.
    Poole CA, Flint MH, Beaumont BW (1988) Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res 6:408–419. doi:10.1002/jor.1100060312 CrossRefGoogle Scholar
  15. 15.
    Poole CA, Ayad S, Gilbert RT (1992) Chondrons from articular cartilage V.* Immunohistochemical evaluation of type VI collagen organisation in isolated chondrons by light, confocal and electron microscopy. J Cell Sci 103:1101–1110Google Scholar
  16. 16.
    Guilak F, Alexopoulos LG, Upton ML et al (2006) The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann NY Acad Sci 1068:498–512. doi:10.1196/annals.1346.011 CrossRefGoogle Scholar
  17. 17.
    Buckwalter J (1983) Articular cartilage. AAOS. Instr Course Lect 120:349–370Google Scholar
  18. 18.
    Mow VC, Holmes MH, Michael Lai W (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394. doi:10.1016/0021-9290(84)90031-9 CrossRefGoogle Scholar
  19. 19.
    Timothy E, Hardingham AJF (1992) Proteoglycans: many forms and many functions. FASEB J 6:861–870Google Scholar
  20. 20.
    Kempson GE (1972) Mechanical properties of articular cartilage. J Physiol 223:23PGoogle Scholar
  21. 21.
    Geihan R, Agnes R, Earl B, Poole AR (1992) Studies of the articular cartilage proteoglycan aggrecan in health and osteoarthritis evidence for molecular heterogeneity and extensive molecular changes in disease. J Clin Invest 90:2268–2277. doi:10.1172/JCI116113.These CrossRefGoogle Scholar
  22. 22.
    Buckwalter J, Mankin H (1997) Articular cartilage I: tissue design and chondrocyte-matrix interactions. J Bone Jt Surg 79-A:600–611Google Scholar
  23. 23.
    Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258CrossRefGoogle Scholar
  24. 24.
    Fosang AJ, Rogerson FM, East CJ, Stanton H (2008) ADAMTS-5: the story so far. Eur Cell Mater 15:11–26Google Scholar
  25. 25.
    Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504. doi:10.1074/jbc.C000848200 CrossRefGoogle Scholar
  26. 26.
    Benninghoff A (1925) Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Anat Entwicklungsgesch 76:43–63. doi:10.1007/BF02134417 CrossRefGoogle Scholar
  27. 27.
    Cells E, Eyre DR, Weis MA, Wu J (2006) Articular cartilage collagen: an irreplaceable framework. Eur Cell Mater 12:57–63Google Scholar
  28. 28.
    Blumbach K, Bastiaansen-Jenniskens YM, DeGroot J et al (2009) Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures. Arthritis Rheum 60:3676–3685. doi:10.1002/art.24979 CrossRefGoogle Scholar
  29. 29.
    Hagg R (1998) Cartilage fibrils of mammals are biochemically heterogeneous: differential distribution of decorin and collagen IX. J Cell Biol 142:285–294. doi:10.1083/jcb.142.1.285 CrossRefGoogle Scholar
  30. 30.
    Martel-Pelletier J, Boileau C, Pelletier J-P, Roughley PJ (2008) Cartilage in normal and osteoarthritis conditions. Best Pract Res Clin Rheumatol 22:351–384. doi:10.1016/j.berh.2008.02.001 CrossRefGoogle Scholar
  31. 31.
    Verzijl N, DeGroot J, Thorpe SR et al (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031. doi:10.1074/jbc.M006700200 CrossRefGoogle Scholar
  32. 32.
    Swann BDA, Sotman S, Dixon M, Brooks C (1977) The isolation and partial characterization of the major glycoprotein (LGP-I) from the articular lubricating fraction from bovine synovial fluid. Biochem J 161:473–485CrossRefGoogle Scholar
  33. 33.
    Swann DA, Hendren RB, Radin EL et al (1981) The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum 24:22–30CrossRefGoogle Scholar
  34. 34.
    Jay GD, Tantravahi U, Britt DE et al (2001) Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res 19:677–687. doi:10.1016/S0736-0266(00)00040-1 CrossRefGoogle Scholar
  35. 35.
    Ayral X, Pickering EH, Woodworth TG et al (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil 13:361–367. doi:10.1016/j.joca.2005.01.005 CrossRefGoogle Scholar
  36. 36.
    Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440CrossRefGoogle Scholar
  37. 37.
    Lemperg R (1971) The subchondral bone plate of the femoral head in adult rabbits. I. Spontaneus remodelling studied by microradiography and tetracycline labelling. Virchows Arch A Pathol Pathol Anat 352:1–13CrossRefGoogle Scholar
  38. 38.
    Redler I, Mow VC, Zimny ML, Mansell J (1975) The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res 112:357–362Google Scholar
  39. 39.
    Eckstein F, Milz S, Anetzberger H, Putz R (1998) Thickness of the subchondral mineralised tissue zone (SMZ) in normal male and female and pathological human patellae. J Anat 192:81–90. doi:10.1046/j.1469-7580.1998.19210081.x CrossRefGoogle Scholar
  40. 40.
    Goldring SR (2012) Alterations in periarticular bone and cross talk between subchondral bone and articular cartilage in osteoarthritis. Ther Adv Musculoskelet Dis 4:249–258. doi:10.1177/1759720X12437353 CrossRefGoogle Scholar
  41. 41.
    Duncan H, Jundt J, Riddle JM et al (1987) The tibial subchondral plate. A scanning electron microscopic study. J Bone Joint Surg Am 69:1212–1220Google Scholar
  42. 42.
    Imhof H, Sulzbacher I, Grampp S et al (2000) Subchondral bone and cartilage disease: a rediscovered functional unit. Invest Radiol 35:581–588CrossRefGoogle Scholar
  43. 43.
    Mobasheri A, Barrett-Jolley R, Carter S et al (2005) Functional roles of mechanosensitive ion channels, ß1 integrins and kinase cascades in chondrocyte mechanotransduction—mechanosensitivity in cells and tissues—NCBI bookshelf. In: Mechanosensitivity cells tissues. Moscow Acad. http://www.ncbi.nlm.nih.gov/books/NBK7517/. Accessed 18 Nov 2014
  44. 44.
    Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15:375. doi:10.1007/s11926-013-0375-6 CrossRefGoogle Scholar
  45. 45.
    Bader DL, Salter DM, Chowdhury TT (2011) Biomechanical influence of cartilage homeostasis in health and disease. Arthritis 2011:979032. doi:10.1155/2011/979032 CrossRefGoogle Scholar
  46. 46.
    Leong DJ, Hardin JA, Cobelli NJ, Sun HB (2011) Mechanotransduction and cartilage integrity. Ann NY Acad Sci 1240:32–37. doi:10.1111/j.1749-6632.2011.06301.x CrossRefGoogle Scholar
  47. 47.
    Sun HB (2010) Mechanical loading, cartilage degradation, and arthritis. Ann NY Acad Sci 1211:37–50. doi:10.1111/j.1749-6632.2010.05808.x CrossRefGoogle Scholar
  48. 48.
    Gosset M, Berenbaum F, Levy A et al (2008) Mechanical stress and prostaglandin E2 synthesis in cartilage. Biorheology 45:301–320Google Scholar
  49. 49.
    Griffin TM, Guilak F (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 33:195–200CrossRefGoogle Scholar
  50. 50.
    Buckwalter, Joseph A., Henry J. Mankin AJG, Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Instr Course Lect Am Acad Orthop Surg 54:465Google Scholar
  51. 51.
    Mak AF (1986) The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng 108:123. doi:10.1115/1.3138591 CrossRefGoogle Scholar
  52. 52.
    Mak AF (1986) Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23:371–383Google Scholar
  53. 53.
    Wilson W, van Donkelaar CC, van Rietbergen R, Huiskes R (2005) The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. Med Eng Phys 27:810–826. doi:10.1016/j.medengphy.2005.03.004 CrossRefGoogle Scholar
  54. 54.
    Rosenberg L, Hellmann W, Kleinschmidt AK (1970) Macromolecular models of proteinpolysaccharides from bovine nasal cartilage based on electron microscopic studies. J Biol Chem 245:4123–4130Google Scholar
  55. 55.
    Akizuki S, Mow VC, Muller F et al (1987) Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J Orthop Res 5:173–186. doi:10.1002/jor.1100050204 CrossRefGoogle Scholar
  56. 56.
    Nordin M, Frankel VH (2001) Basic biomechanics of the musculoskeletal system, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, 450 pGoogle Scholar
  57. 57.
    Zhu W, Mow VC, Koob TJ, Eyre DR (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 11:771–781. doi:10.1002/jor.1100110602 CrossRefGoogle Scholar
  58. 58.
    Herzog W, Diet S, Suter E et al (1998) Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech 31:1137–1145. doi:10.1016/S0021-9290(98)00136-5 CrossRefGoogle Scholar
  59. 59.
    Arokoski J, Kiviranta I, Jurvelin J et al (1993) Long-distance running causes site-dependent decrease of cartilage glycosaminoglycan content in the knee joints of beagle dogs. Arthritis Rheum 36:1451–1459. doi:10.1002/art.1780361018 CrossRefGoogle Scholar
  60. 60.
    Haut RC, Ide TM, De Camp CE (1995) Mechanical responses of the rabbit patello-femoral joint to blunt impact. J Biomech Eng 117:402. doi:10.1115/1.2794199 CrossRefGoogle Scholar
  61. 61.
    Atkinson PJ, Haut RC (1995) Subfracture insult to the human cadaver patellofemoral joint produces occult injury. J Orthop Res 13:936–944. doi:10.1002/jor.1100130619 CrossRefGoogle Scholar
  62. 62.
    Hollander AP, Pidoux I, Reiner A et al (1995) Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest 96:2859–2869. doi:10.1172/JCI118357 CrossRefGoogle Scholar
  63. 63.
    Hollander AP, Heathfield TF, Webber C et al (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Invest 93:1722–1732. doi:10.1172/JCI117156 CrossRefGoogle Scholar
  64. 64.
    Lefebvre V, Peeters-Joris C, Vaes G (1990) Modulation by interleukin 1 and tumor necrosis factor alpha of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta 1052:366–378CrossRefGoogle Scholar
  65. 65.
    Goldring MB, Birkhead J, Sandell LJ et al (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82:2026–2037. doi:10.1172/JCI113823 CrossRefGoogle Scholar
  66. 66.
    Goldring MB, Birkhead J, Sandell LJ, Krane SM (1990) Synergistic regulation of collagen gene expression in human chondrocytes by tumor necrosis factor-? and interleukin-1? Ann NY Acad Sci 580:536–539. doi:10.1111/j.1749-6632.1990.tb17983.x CrossRefGoogle Scholar
  67. 67.
    Mueller MB, Tuan RS (2011) Anabolic/catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM&R 3:S3–S11. doi:10.1016/j.pmrj.2011.05.009 CrossRefGoogle Scholar
  68. 68.
    Mariani E, Pulsatelli L, Facchini A (2014) Signaling pathways in cartilage repair. Int J Mol Sci 15:8667–8698. doi:10.3390/ijms15058667 CrossRefGoogle Scholar
  69. 69.
    Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4:157–164CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marta Ondrésik
    • 1
    • 2
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group—Biomaterials, Biodegradables and Biomimetics, European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga, GuimarãesPortugal

Personalised recommendations