DeepPainter: Painter Classification Using Deep Convolutional Autoencoders

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9887)

Abstract

In this paper we describe the problem of painter classification, and propose a novel approach based on deep convolutional autoencoder neural networks. While previous approaches relied on image processing and manual feature extraction from paintings, our approach operates on the raw pixel level, without any preprocessing or manual feature extraction. We first train a deep convolutional autoencoder on a dataset of paintings, and subsequently use it to initialize a supervised convolutional neural network for the classification phase.

The proposed approach substantially outperforms previous methods, improving the previous state-of-the-art for the 3-painter classification problem from 90.44 % accuracy (previous state-of-the-art) to 96.52 % accuracy, i.e., a 63 % reduction in error rate.

References

  1. 1.
    Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766, pp. 1–13. Springer, Heidelberg (2003)MATHGoogle Scholar
  2. 2.
    Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Jones-Smith, K., Mathur, H.: Fractal analysis: revisiting Pollock’s drip paintings. Nature 444(7119), E9–E10 (2006)CrossRefGoogle Scholar
  4. 4.
    Kammerer, P., Lettner, M., Zolda, E., Sablatnig, R.: Identification of drawing tools by classification of textural and boundary features of strokes. Pattern Recogn. Lett. 28(6), 710–718 (2007)CrossRefGoogle Scholar
  5. 5.
    Keren, D.: Painter identification using local features and naive Bayes. In: Proceedings of the IEEE International Conference on Pattern Recognition, vol. 2, pp. 474–477 (2002)Google Scholar
  6. 6.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1106–1114 (2012)Google Scholar
  7. 7.
    Kroner, S., Lattner, A.: Authentication of free hand drawings by pattern recognition methods. In: Proceedings of the IEEE 14th International Conference on Pattern Recognition, vol. 1, pp. 462–464 (1998)Google Scholar
  8. 8.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11)Google Scholar
  9. 9.
    Levy, E., David, O.E., Netanyahu, N.S.: Painter classification using genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 3027–3034 (2013)Google Scholar
  10. 10.
    Levy, E., David, O.E., Netanyahu, N.S.: Genetic algorithms and deep learning for automatic painter classification. In: ACM Genetic and Evolutionary Computation Conference, pp. 1143–1150 (2014)Google Scholar
  11. 11.
    Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Phillips, D.: How do forgers deceive art critics? In: Gregory, R., Harris, J., Heard, P., Rose, D. (eds.) The Artful Eye, pp. 372–388. Oxford University Press (1995)Google Scholar
  13. 13.
    Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recogn. Lett. 10(5), 335–347 (1989)CrossRefMATHGoogle Scholar
  14. 14.
    Taylor, R.P., Guzman, R., Martin, T.P., Hall, G.D.R., Micolich, A.P., Jonas, D., Scannell, B.C., Fairbanks, M.S., Marlow, C.A.: Authenticating Pollock paintings using fractal geometry. Pattern Recogn. Lett. 28(6), 695–702 (2007)CrossRefGoogle Scholar
  15. 15.
    van den Herik, H.J., Postma, E.O.: Discovering the visual signature of painters. In: Kasabov, N. (ed.) Future Directions for Intelligent Systems and Information Sciences, pp. 129–147. Physica-Verlag, Heidelberg (2000)Google Scholar
  16. 16.
    Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: 25th International Conference on Machine Learning, ICML, pp. 1096–1103 (2008)Google Scholar
  17. 17.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: International Conference on Computer Vision, ICCV, pp. 2018–2025 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael
  2. 2.Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations