Realizing Medium Spiny Neurons with a Simple Neuron Model

  • Sami Utku ÇelikokEmail author
  • Neslihan Serap Şengör
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9886)


Striatal medium spiny neurons (MSNs) constitute input nuclei of the basal ganglia. Most well-known dichotomous of striatal MSNs stem from dopaminergic modulation of striatal processing. Dopamine modulates excitability in striatal MSNs with a complex underlying mechanism and lack of balance in this delicate system leads to pathologies such as Parkinson’s disease. On the contrary, investigation of such a system requires simple, but yet comprehensive models that are capable of capturing complex behaviour of MSNs. We propose a reduced-computational but biologically plausible model that mimics the cell dynamics of striatal D\(_1\)- and D\(_2\)-type MSNs with different levels of dopamine using data from a recent study. Proposed computational model shows good matches to the MSN responses and captures some essential features of MSNs such as first spike latencies, dopamine modulated state transitions and enhanced response to depolarizing input during dopamine intervention.


Dopamine Electrophysiology Medium spiny neurons Simple model 


  1. 1.
    Cools, R., Ivry, R.B., D’Esposito, M.: The human striatum is necessary for responding to changes in stimulus relevance. J. Cogn. Neurosci. 18, 1973–1983 (2006)CrossRefGoogle Scholar
  2. 2.
    Gillies, A., Arbuthnott, G.W.: Computational models of the basal ganglia. Mov. Disord. 15, 762–770 (2000)CrossRefGoogle Scholar
  3. 3.
    Nieoullon, A.: Dopamine and the regulation of cognition and attention. Neurobiology 67, 53–83 (2002)Google Scholar
  4. 4.
    Apicella, P., et al.: Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol. 68, 945–960 (1992)Google Scholar
  5. 5.
    Gerfen, C.R.: Molecular effects of dopamine on striatal projection pathways. Trends Neurosci. 23, 64–70 (2000)CrossRefGoogle Scholar
  6. 6.
    Keshavan, M.S., et al.: Psychosis proneness and ADHD in young relatives of schizophrenia patients. Schizophr. Res. 59, 85–92 (2003)CrossRefGoogle Scholar
  7. 7.
    Weiner, I., Joel, D.: Dopamine in schizophrenia: dysfunctional processing in basal ganglia-thalamocortical split circuits. In: Handbook of Experimental Pharmacology: Dopamine in the CNS, vol. 154, pp. 417–471 (2002)Google Scholar
  8. 8.
    Humphries, M.D., et al.: Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front. Comput. Neurosci 3, e1001011 (2009)CrossRefGoogle Scholar
  9. 9.
    Moyer, J.T., Wolf, J.A., Finkel, L.H.: Effects of dopaminergic modulation on the integrative properties of the ventral striatal medium spiny neuron. J. Neurophysiol. 98, 3731–3748 (2007)CrossRefGoogle Scholar
  10. 10.
    Gruber, A.J., Solla, S.A., Houk, J.C.: Dopamine induced bistability enhances signal processing in spiny neurons. In: Advances in Neural Information Processing Systems, vol. 15, pp. 165–172. MIT Press, Cambridge (2003)Google Scholar
  11. 11.
    Guthrie, M., Myers, C.E., Gluck, M.A.: A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson’s disease. Behav. Brain Res. 200, 48–59 (2009)CrossRefGoogle Scholar
  12. 12.
    Frank, M.J., O’Reilly, R.C.: A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 120, 497–517 (2006)CrossRefGoogle Scholar
  13. 13.
    Navarro-Lopez, E.M., Celikok, U., Sengor, N.S.: Hybrid Systems Neuroscience. In: El Hady, A. (ed.) Closed-Loop Neuroscience. Academic Press (2016, in press)Google Scholar
  14. 14.
    Deco, G., Rolls, E.T.: Attention, short-term memory, and action selection: a unifying theory. Neurobiology 76, 236–256 (2005)Google Scholar
  15. 15.
    Gertler, T.S., Chan, C.S., Surmeier, D.J.: Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824 (2008)CrossRefGoogle Scholar
  16. 16.
    Nicola, S.M., Surmeier, J., Malenka, R.C.: Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000)CrossRefGoogle Scholar
  17. 17.
    Nisenbaum, E.S., Wilson, C.J.: Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons. J. neurosci. 15, 4449–4463 (1995)Google Scholar
  18. 18.
    Lin, C.W., et al.: Characterization of cloned human dopamine D\(_{1}\) receptor-mediated calcium release in 293 cells. Mol. Pharmacol. 47, 131–139 (1995)Google Scholar
  19. 19.
    Seabrook, G.R., et al.: Pharmacology of high-threshold calcium currents in GH\(_{4}\)C\(_{1}\) pituitary cells and their regulation by activation of human D\(_{2}\) and D\(_{4}\) dopamine receptors. Br. J. Pharmacol. 112, 728–734 (1994)CrossRefGoogle Scholar
  20. 20.
    Wilson, C.J., Kawaguchi, Y.: The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16, 2397–2410 (1996)Google Scholar
  21. 21.
    Gurney, K., Prescott, T.J., Redgrave, P.: A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wolf, J.A., et al.: NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J. Neurosci. 25, 9080–9095 (2005)CrossRefGoogle Scholar
  23. 23.
    Elibol, R., Sengor, N.S.: A computational model investigating the role of dopamine on synchronization of striatal medium spiny neurons. In: Medicine Technology Congress, pp. 147–150 (2014)Google Scholar
  24. 24.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)Google Scholar
  25. 25.
    Mahon, S., et al.: Intrinsic properties of rat striatal output neurones and time-dependent facilitation of cortical inputs in vivo. J. Physiol. 527, 345–354 (2000)CrossRefGoogle Scholar
  26. 26.
    Celikok, U., Navarro-Lopez, E.M., Sengor, N.S.: A Computational Model Describing the Interplay of Basal Ganglia and Subcortical Background Oscillations during Working Memory Processes. arXiv preprint, arXiv:1601.07740 (2016)

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biomedical Engineering DepartmentBoğaziçi UniversityBebek, BeşiktaşTurkey
  2. 2.Electronics and Telecommunication Departmentİstanbul Technical UniversityIstanbulTurkey

Personalised recommendations