Mapping the Language Connectome in Healthy Subjects and Brain Tumor Patients

  • Gregory Zegarek
  • Xerxes D. Arsiwalla
  • David Dalmazzo
  • Paul F. M. J. Verschure
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9886)

Abstract

A crucial challenge for both clinical and systems neuroscience is reliable mapping of brain networks to higher-order cognitive functions in both health and disease. In this paper, we map the brain’s emerging language network in the human connectome based on data from rTMS studies on healthy volunteers as well as brain tumor patients. The key finding is that cortical areas which are involved in the language network are more likely to be connected to Wernicke’s and Broca’s areas based on standard graph theoretic measures. In addition, the higher the connectivity of a particular area to the classic language areas, the more likely it is that region is involved in the language network. We comment on the clinical value that these structure-function connectome maps can have for planning and aiding neurosurgical procedures.

Keywords

Brain mapping Connectomics Neurosurgery 

References

  1. 1.
    Acioly, M.A., Gharabaghi, A., Zimmermann, C., Erb, M., Heckl, S., Tatagiba, M.: Dissociated language functions: a matter of atypical language lateralization or cerebral plasticity? J. Neurolog. Surg. Part A Central Eur. Neurosurg. 75(1), 64–69 (2014)Google Scholar
  2. 2.
    Arsiwalla, X.D., Betella, A., Martínez, E., Omedas, P., Zucca, R., Verschure, P.: The dynamic connectome: a tool for large scale 3D reconstruction of brain activity in real time. In: 27th European Conference on Modeling and Simulation, ECMS Rekdalsbakken, W., Bye, R., Zhang, H. (eds.). Alesund, Norway (2013)Google Scholar
  3. 3.
    Arsiwalla, X.D., Dalmazzo, D., Zucca, R., Betella, A., Brandi, S., Martinez, E., Omedas, P., Verschure, P.: Connectomics to semantomics: addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)CrossRefGoogle Scholar
  4. 4.
    Arsiwalla, X.D., Zucca, R., Betella, A., Martinez, E., Dalmazzo, D., Omedas, P., Deco, G., Verschure, P.: Network dynamics with brainx3: A large-scale simulation of the human brain network with real-time interaction. Front. Neuroinformatics 9(2) (2015) http://www.frontiersin.org/neuroinformatics/10.3389/fninf.2015.00002/abstract
  5. 5.
    Betella, A., Bueno, E.M., Kongsantad, W., Zucca, R., Arsiwalla, X.D., Omedas, P., Verschure, P.F.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, pp. 23. ACM (2014)Google Scholar
  6. 6.
    Betella, A., Cetnarski, R., Zucca, R., Arsiwalla, X.D., Martínez, E., Omedas, P., Mura, A., Verschure, P.F.M.J.: BrainX3: embodied exploration of neural data. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 37:1–37:4. ACM (2014) http://doi.acm.org/10.1145/2617841.2620726
  7. 7.
    Betella, A., Martínez, E., Zucca, R., Arsiwalla, X.D., Omedas, P., Wierenga, S., Mura, A., Wagner, J., Lingenfelser, F., André, E., et al.: Advanced interfaces to stem the data deluge in mixed reality: placing human (un) consciousness in the loop. In: ACM SIGGRApPH 2013 Posters, p. 68. ACM (2013)Google Scholar
  8. 8.
    Bolognini, N., Ro, T.: Transcranial magnetic stimulation: disrupting neural activity to alter and assess brain function. J. Neurosci. 30(29), 9647–9650 (2010)CrossRefGoogle Scholar
  9. 9.
    Corina, D.P., Loudermilk, B.C., Detwiler, L., Martin, R.F., Brinkley, J.F., Ojemann, G.: Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang. 115(2), 101–112 (2010)CrossRefGoogle Scholar
  10. 10.
    Dronkers, N.F.: The pursuit of brain-language relationships. Brain Lang. 71(1), 59–61 (2000)CrossRefGoogle Scholar
  11. 11.
    Friederici, A.D., Gierhan, S.M.: The language network. Curr. Opin. Neurobiol. 23(2), 250–254 (2013)CrossRefGoogle Scholar
  12. 12.
    Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)CrossRefGoogle Scholar
  13. 13.
    Holodny, A.I., Schulder, M., Ybasco, A., Liu, W.C.: Translocation of broca’s area to the contralateral hemisphere as the result of the growth of a left inferior frontal glioma. J. Comput. Assist. Tomogr. 26(6), 941–943 (2002)CrossRefGoogle Scholar
  14. 14.
    Iturria-Medina, Y., Canales-Rodriguez, E., Melie-Garcia, L., Valdes-Hernandez, P., Martinez-Montes, E., Alemán-Gómez, Y., Sánchez-Bornot, J.: Characterizing brain anatomical connections using diffusion weighted mri and graph theory. Neuroimage 36(3), 645–660 (2007)CrossRefGoogle Scholar
  15. 15.
    Krieg, S.M., Sollmann, N., Tanigawa, N., Foerschler, A., Meyer, B., Ringel, F.: Cortical distribution of speech and language errors investigated by visual object naming and navigated transcranial magnetic stimulation. Brain Structure and Function, pp. 1–28 (2015)Google Scholar
  16. 16.
    Omedas, P., Betella, A., Zucca, R., Arsiwalla, X.D., Pacheco, D., Wagner, J., Lingenfelser, F., Andre, E., Mazzei, D., Lanatá, A., et al.: Xim-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, pp. 26. ACM (2014)Google Scholar
  17. 17.
    Picht, T., Schmidt, S., Brandt, S., Frey, D., Hannula, H., Neuvonen, T., Karhu, J., Vajkoczy, P., Suess, O.: Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery 69(3), 581–589 (2011)CrossRefGoogle Scholar
  18. 18.
    Rosenow, F., Lüders, H.: Presurgical evaluation of epilepsy. Brain 124(9), 1683–1700 (2001)CrossRefGoogle Scholar
  19. 19.
    Rösler, J., Niraula, B., Strack, V., Zdunczyk, A., Schilt, S., Savolainen, P., Lioumis, P., Mäkelä, J., Vajkoczy, P., Frey, D., et al.: Language mapping in healthy volunteers and brain tumor patients with a novel navigated tms system: evidence of tumor-induced plasticity. Clin. Neurophysiol. 125(3), 526–536 (2014)CrossRefGoogle Scholar
  20. 20.
    Vikingstad, E.M., George, K.P., Johnson, A.F., Cao, Y.: Cortical language lateralization in right handed normal subjects using functional magnetic resonance imaging. J. Neurol. Sci. 175(1), 17–27 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gregory Zegarek
    • 1
    • 2
  • Xerxes D. Arsiwalla
    • 2
  • David Dalmazzo
    • 2
  • Paul F. M. J. Verschure
    • 2
    • 3
  1. 1.Pritzker School of MedicineUniversity of ChicagoChicagoUSA
  2. 2.Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and NeuroroboticsUniversitat Pompeu FabraBarcelonaSpain
  3. 3.Catalan Institute of Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations