Expressing Sentiments in Game Reviews

  • Ana Secui
  • Maria-Dorinela Sirbu
  • Mihai DascaluEmail author
  • Scott Crossley
  • Stefan Ruseti
  • Stefan Trausan-Matu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9883)


Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.


Natural Language Processing Sentiment analysis Opinion mining Lexical analysis 



The work presented in this paper was partially funded by the EC H2020 project RAGE (Realising and Applied Gaming Eco-System) Grant agreement No 644187.


  1. 1.
    Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, San Rafael (2012)Google Scholar
  2. 2.
    Jurafsky, D., Martin, J.H.: An Introduction to Natural Language Processing. Computational Linguistics, and Speech Recognition. Pearson Prentice Hall, London (2009)Google Scholar
  3. 3.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC 2010, Valletta, Malta (2010)Google Scholar
  4. 4.
    Cheng, O.K.M., Lau, R.Y.K.: Probabilistic language modelling for context-sensitive opinion mining. Sci. J. Inf. Eng. 5(5), 150–154 (2015)Google Scholar
  5. 5.
    Crossley, S., Kyle, K., McNamara, D.S.: Sentiment Analysis and Social Cognition Engine (SEANCE): An Automatic Tool for Sentiment, Social Cognition, and Social Order Analysis. Behavior Research Methods (in press)Google Scholar
  6. 6.
    Stone, P., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The General Inquirer: A Computer Approach to Content Analysis. The MIT Press, Cambridge (1966)Google Scholar
  7. 7.
    Lasswell, H.D., Namenwirth, J.Z.: The Lasswell Value Dictionary. Yale University Press, New Haven (1969)Google Scholar
  8. 8.
    Cambria, E., Grassi, M., Poria, S., Hussain, A.: Sentic computing for social media analysis, representation, and retrieval. In: Ramzan, N., Zwol, R., Lee, J.S., Clüver, K., Hua, X.S. (eds.) Social Media Retrieval, pp. 191–215. Springer, New York (2013)CrossRefGoogle Scholar
  9. 9.
    Cambria, E., Schuller, B., Xia, Y.Q., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)CrossRefGoogle Scholar
  10. 10.
    Scherer, K.R.: What are emotions? And how can they be measured? Soc. sci. Inf. 44(4), 695–729 (2005)CrossRefGoogle Scholar
  11. 11.
    Bradley, M.M., Lang, P.J.: Affective Norms for English Words (ANEW): Stimuli, Instruction Manual and Affective Ratings. The Center for Research in Psychophysiology, University of Florida, Gainesville (1999)Google Scholar
  12. 12.
    Pennebaker, J.W., Booth, R.J., Francis, M.E.: Linguistic inquiry and word count: LIWC [Computer software] (2007)Google Scholar
  13. 13.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004). ACM, Seattle (2004)Google Scholar
  14. 14.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.P.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Conference on Empirical Methods in Natural Language Processing (EMNLP 2013). ACL, Seattle (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Secui
    • 1
  • Maria-Dorinela Sirbu
    • 1
  • Mihai Dascalu
    • 1
    Email author
  • Scott Crossley
    • 2
  • Stefan Ruseti
    • 1
  • Stefan Trausan-Matu
    • 1
  1. 1.Computer Science DepartmentUniversity Politehnica of BucharestBucharestRomania
  2. 2.Applied Linguistics and ESLGeorgia State UniversityAtlantaUSA

Personalised recommendations