Social Media Resilience During Infrastructure Breakdowns Using Mobile Ad-Hoc Networks

  • Christian Reuter
  • Thomas Ludwig
  • Marc-André Kaufhold
  • Julian Hupertz
Conference paper
Part of the Progress in IS book series (PROIS)

Abstract

Social media and instant messaging services are nowadays considered as important communication infrastructures on which people rely on. However, the exchange of content during breakdowns of the underlying technical infrastructures, which sometimes happens based on environmental occurrences, is challenging. Hence, with this paper, we examine the resilience of social media during breakdowns. We discuss communication options and examine ad-hoc functionality for the exchange of social media data between different actors in such cases. To address this, we have developed a concept, which makes use of mobile ad-hoc networks (MANETs) for the spontaneous exchange of information with smartphones. We implemented our concept as the mobile application Social Offline Map (SOMAP) and evaluated it within two iterations (1.0 and 2.0). Finally, we discuss our contribution within the context of related work and the limitations of our approach.

Keywords

Infrastructure Resilience MANET Social media Environmental informatics 

Notes

Acknowledgments

The research project ‘EmerGent’ was funded by a grant of the European Union (FP7 No. 608352). We would like to thank all participants of our empirical study.

References

  1. Al-Akkad, A., Raffelsberger, C., Boden, A., Ramirez, L., Zimmermann, A., & Augustin, S. (2014a). Tweeting “When Online is Off”? opportunistically creating mobile Ad-hoc networks in response to disrupted infrastructure. In S. R. Hiltz, M. S. Pfaff, L. Plotnick, & P. C. Shih (Eds.), Proceedings of the Information Systems for Crisis Response and Management (ISCRAM) (pp. 657–666).Google Scholar
  2. Al-Akkad, A., Ramirez, L., Boden, A., Randall, D., Zimmermann, A., & Augustin, S. (2014b). Help beacons: Design and evaluation of an Ad-Hoc lightweight S.O.S. system for smartphones. In CHI 2014 (pp. 1485–1494).Google Scholar
  3. Brayley, H., Redfern, M. A., & Bo, Z. Q. (2005). The public perception of power blackouts. In 2005 IEEE/PES Transmission and Distribution Conference and Exposition. Asia Pacific (pp. 1–5).Google Scholar
  4. Dunkel, J., Eberhart, A., Fischer, S., Kleiner, C., & Koschel, A. (2008). Systemarchitekturen für verteilte Anwendungen. München: Carl Hanser Verlag.CrossRefGoogle Scholar
  5. Gardner-Stephen, P. (2014). The serval project : Practical wireless Ad-Hoc mobile telecommunications. http://developer.servalproject.org/files/CWN_Chapter_Serval.pdf.
  6. Helsloot, I., & Beerens, R. (2009). Citizens’ response to a large electrical power out-age in the Netherlands in 2007. Journal of Contingencies and Crisis Management, 17, 64–68.CrossRefGoogle Scholar
  7. Hiete, D. M., Merz, M., & Trinks, C. (2010). Krisenmanagement Stromausfall Kurzfassung—Krisenmanagement bei einer großflächigen Unterbrechung der Stromversorgung am Beispiel Baden-Württemberg., Stuttgart (2010).Google Scholar
  8. Hossmann, T., Legendre, F., Carta, P., Gunningberg, P., & Rohner, C. (2011). Twitter in disaster mode: Opportunistic communication and distribution of sensor data in emergencies. Proceedings of ExtremeCom (pp. 1–6). Manaus, Brazil: ACM Press.CrossRefGoogle Scholar
  9. Hughes, A. L., Denis, L. A. S., Palen, L., & Anderson, K. M. (2014). Online public communications by police & fire services during the 2012 Hurricane Sandy. Proceedings of the Conference on Human Factors in Computing Systems (CHI) (pp. 1505–1514). Toronto, Canada: ACM.Google Scholar
  10. Hunt, A. (2003). Risk and moralization in everyday life. In R. V. Ericson & A. Doyle (Eds.), Risk and morality (pp. 165–192). Toronto: University of Toronto Press.Google Scholar
  11. Kahler, H., Kensing, F., & Muller, M. (2000). Methods & tools: Constructive interaction and collab-orative work: Introducing a method for testing collaborative systems. Interactions, 7, 27–34.CrossRefGoogle Scholar
  12. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53, 59–68.CrossRefGoogle Scholar
  13. Kargl, F. (2003). Sicherheit in Mobilen Ad-hoc Netzwerken. http://www.tostermann.de/1_public/dissertationMANET.pdf.
  14. Kaufhold, M.-A., & Reuter, C. (2016). The self-organization of digital volunteers across social media: The case of the 2013 European floods in Germany. J. Homel. Secur. Emerg. Manag., 13, 137–166.Google Scholar
  15. Legendre, F., Hossmann, T., Sutton, F., & Plattner, B. (2011). 30 Years of Ad Hoc networking research: What about humanitarian and disaster relief solutions? What are we still missing? In Proceedings of the International Conference on Wireless Technologies for Humanitarian Relief (pp. 217–217).Google Scholar
  16. Lorenz, D. F. (2010). Kritische Infrastrukturen aus Sicht der Bevölkerung. Forschungsforum Öffentliche Sicherheit der FU Berlin.Google Scholar
  17. Ludwig, T., Reuter, C., Siebigteroth, T., & Pipek, V. (2015). CrowdMonitor: Mobile crowd sensing for assessing physical and digital activities of citizens during emergencies. In Proceedings of the Conference on Human Factors in Computing Systems (CHI). Seoul, Korea: ACM Press.Google Scholar
  18. Nielsen, J. (1993). Usability engineering. San Francisco, USA: Morgan Kaufmann.Google Scholar
  19. Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52, 56–65.CrossRefGoogle Scholar
  20. Olofsson, S., Carlsson, V., & Sjölander, J. (2006). The friend locator: Supporting visitors at large-scale events. Personal and Ubiquitous Computing, 10, 84–89.CrossRefGoogle Scholar
  21. Reuter, C. (2014a). Communication between power blackout and mobile network overload. International Journal of Information Systems for Crisis Response and Management (IJISCRAM), 6, 38–53.Google Scholar
  22. Reuter, C. (2014b). Emergent collaboration infrastructures: Technology design for inter-organizational crisis management (Ph.D. Thesis). Springer Gabler, Siegen, Germany.Google Scholar
  23. Reuter, C., Ludwig, T., Funke, T., & Pipek, V. (2015a). SOMAP: Network independent social-offline-map-mashup. In Proceedings of the Information Systems for Crisis Response and Management (ISCRAM), Kristiansand, Norway.Google Scholar
  24. Reuter, C., Ludwig, T., Kaufhold, M.-A., & Pipek, V. (2015b). XHELP: Design of a cross-platform social-media application to support volunteer moderators in disasters. In Proceedings of the Conference on Human Factors in Computing Systems (CHI). Seoul, Korea: ACM Press.Google Scholar
  25. Reuter, C., Ludwig, T., Ritzkatis, M., & Pipek, V. (2015c). Social-QAS: Tailorable quality assessment service for social media content. In Proceedings of the International Symposium on End-User Development (IS-EUD). Lecture Notes in Computer Science.Google Scholar
  26. Reuter, C., Ludwig, T., & Pipek, V. (2016). Kooperative Resilienz—ein soziotechnischer Ansatz durch Kooperationstechnologien im Krisenmanagement. Grup. Interaktion. Organ. Zeitschrift für Angew. Organ.Google Scholar
  27. Shalunov, S. (2013). Open garden: Multi-hop Wi-Fi offload. https://opengarden.com/Multi-hop_Wi-Fi_Offload.pdf, (2013).
  28. Stallings, R. A., & Quarantelli, E. L. (1985). Emergent citizen groups and emergency management. Public Administration Review, 45, 93–100.CrossRefGoogle Scholar
  29. Starbird, K., & Palen, L. (2011). Voluntweeters: Self-organizing by digital volunteers in times of crisis. In Proceedings of the Conference on Human Factors in Computing Systems (CHI) (pp. 1071–1080). Vancouver, Canada: ACM-Press.Google Scholar
  30. Stevens, G., & Wulf, V. (2009). Computer-supported access control. ACM Transactions on Computer-Human Interaction, 16, 1–26.CrossRefGoogle Scholar
  31. Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage Publications.Google Scholar
  32. Toriumi, F., Sakaki, T., & Shinoda, K. (2013). Information sharing on Twitter during the 2011 catastrophic earthquake. In Proceedings of the 22nd International Conference on World Wide Web Companion (pp. 1025–1028). Rio de Janeiro: ACM.Google Scholar
  33. Twidale, M., Randall, D., & Bentley, R. (1994). Situated evaluation for cooperative systems Situated evaluation for cooperative systems. Lancaster, UK: Lancaster University.Google Scholar
  34. Vieweg, S., Hughes, A. L., Starbird, K., & Palen, L. (2010). Microblogging during two natural hazards events: What Twitter may contribute to situational awareness. Proceedings of the Conference on Human Factors in Computing Systems (CHI) (pp. 1079–1088). Atlanta, USA: ACM.Google Scholar
  35. Volgger, S., Walch, S., Kumnig, M., & Penz, B. (2006). Kommunikation vor, während und nach der Krise. Amt der Tiroler Landesregierung.Google Scholar
  36. Wilensky, H. (2014). Twitter as a navigator for stranded commuters during the Great East Japan Earthquake. In Proceedings of the Information Systems for Crisis Response and Management (ISCRAM) (pp. 695–704).Google Scholar
  37. Wiseman, J., Garcia, D. H., & Toksvig, M. J. M. (2015). Mobile ad hoc networking (US Patent No. US 9,037,653 B2.Google Scholar
  38. Wulf, V., Rohde, M., Pipek, V., & Stevens, G. (2011). Engaging with practices: design case studies as a research framework in CSCW. In Proceedings of the Conference on Computer Supported Cooperative Work (CSCW) (pp. 505–512). Hangzhou, China: ACM Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Christian Reuter
    • 1
  • Thomas Ludwig
    • 1
  • Marc-André Kaufhold
    • 1
  • Julian Hupertz
    • 1
  1. 1.Institute for Information SystemsUniversity of SiegenSiegenGermany

Personalised recommendations