Advertisement

Reproductive Ageing

  • Cheng Shi
  • Coleen T. MurphyEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL)

Abstract

Reproductive senescence is common in many species across great evolutionary distances. Reproductive ageing occurs in mid-adulthood, earlier than most age-related somatic declines manifest. In this chapter, we review the most recent progress in the field of C. elegans reproductive ageing. We first introduce and compare the available methods of measuring reproductive ageing in C. elegans, then summarize the current knowledge of C. elegans reproductive ageing regulation. We also compare and contrast C. elegans and human/mammalian reproductive decline, and illustrate why C. elegans is a good model to study reproductive ageing. Finally, we discuss how the knowledge gained from worm studies may contribute to the understanding of the relationship between reproductive ageing and somatic longevity. With the proper choice of measurements, screen design, and the development of automatic high throughput assays, more exciting discoveries will be made in the C. elegans reproductive ageing field, which will greatly contribute to our understanding of not only how the reproductive system ages, but also how it is coordinated with the ageing of somatic tissues.

Keywords

C. elegans Reproduction Ageing Longevity Insulin signalling Reproductive ageing TGF-β 

References

  1. 1.
    Schedl T, Kimble J (1988) fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in C. elegans. Genetics 119(1):43–61PubMedPubMedCentralGoogle Scholar
  2. 2.
    Hughes SE, Evason K, Xiong C, Kornfeld K (2007) Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet 3(2):e25. doi: 10.1371/journal.pgen.0030025 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pickett CL, Dietrich N, Chen J, Xiong C, Kornfeld K (2013) Mated progeny production is a biomarker of aging in C. elegans. G3 3(12):2219–2232. doi: 10.1534/g3.113.008664 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Luo S, Kleemann GA, Ashraf JM, Shaw WM, Murphy CT (2010) TGF-beta and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance. Cell 143(2):299–312. doi: 10.1016/j.cell.2010.09.013 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hubbard EJ, Greenstein D (2005) Introduction to the germ line. WormBook:1–4. doi: 10.1895/wormbook.1.18.1
  6. 6.
    Ward S, Carrel JS (1979) Fertilization and sperm competition in the nematode C. elegans. Dev Biol 73(2):304–321PubMedCrossRefGoogle Scholar
  7. 7.
    Luo S, Shaw WM, Ashraf J, Murphy CT (2009) TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging. PLoS Genet 5(12):e1000789. doi: 10.1371/journal.pgen.1000789 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes of physiological processes that predict lifespan of C. elegans. Proc Natl Acad Sci U S A 101(21):8084–8089. doi: 10.1073/pnas.0400848101 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mendenhall AR, Wu D, Park SK, Cypser JR, Tedesco PM, Link CD, Phillips PC, Johnson TE (2011) Genetic dissection of late-life fertility in C. elegans. J Gerontol 66(8):842–854. doi: 10.1093/gerona/glr089 CrossRefGoogle Scholar
  10. 10.
    Sowa JN, Mutlu AS, Xia F, Wang MC (2015) Olfaction modulates reproductive plasticity through neuroendocrine signaling in C. elegans. Curr Biol 25(17):2284–2289. doi: 10.1016/j.cub.2015.07.023 PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wang MC, Oakley HD, Carr CE, Sowa JN, Ruvkun G (2014) Gene pathways that delay C. elegans reproductive senescence. PLoS Genet 10(12):e1004752. doi: 10.1371/journal.pgen.1004752 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in C. elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112PubMedPubMedCentralGoogle Scholar
  13. 13.
    Andux S, Ellis RE (2008) Apoptosis maintains oocyte quality in aging C. elegans females. PLoS Genet 4(12):e1000295. doi: 10.1371/journal.pgen.1000295 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Goudeau J, Aguilaniu H (2010) Carbonylated proteins are eliminated during reproduction in C. elegans. Aging Cell 9(6):991–1003. doi: 10.1111/j.1474-9726.2010.00625.x PubMedCrossRefGoogle Scholar
  15. 15.
    Hodgkin J, Horvitz HR, Brenner S (1979) Nondisjunction mutants of the nematode C. elegans. Genetics 91(1):67–94PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the C. elegans hermaphrodite germline. Development 126(5):1011–1022PubMedGoogle Scholar
  17. 17.
    Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO (2000) A conserved checkpoint pathway mediates DNA damage – induced apoptosis and cell cycle arrest in C. elegans. Mol Cell 5(3):435–443PubMedCrossRefGoogle Scholar
  18. 18.
    Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512. doi: 10.1038/nature08980 PubMedCrossRefGoogle Scholar
  19. 19.
    Hodgkin J, Barnes TM (1991) More is not better: brood size and population growth in a self-fertilizing nematode. Proc Biol Sci/Royal Soc 246(1315):19–24. doi: 10.1098/rspb.1991.0119 CrossRefGoogle Scholar
  20. 20.
    Lee SJ, Kenyon C (2009) Regulation of the longevity response to temperature by thermosensory neurons in C. elegans. Curr Biol 19(9):715–722. doi: 10.1016/j.cub.2009.03.041, S0960-9822(09)00894-X [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xiao R, Zhang B, Dong Y, Gong J, Xu T, Liu J, Xu XZ (2013) A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell 152(4):806–817. doi: 10.1016/j.cell.2013.01.020 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Holehan AM, Merry BJ (1985) The control of puberty in the dietary restricted female rat. Mech Ageing Dev 32(2–3):179–191PubMedCrossRefGoogle Scholar
  23. 23.
    McShane TM, Wise PM (1996) Life-long moderate caloric restriction prolongs reproductive life span in rats without interrupting estrous cyclicity: effects on the gonadotropin-releasing hormone/luteinizing hormone axis. Biol Reprod 54(1):70–75PubMedCrossRefGoogle Scholar
  24. 24.
    Selesniemi K, Lee HJ, Tilly JL (2008) Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell 7(5):622–629. doi: 10.1111/j.1474-9726.2008.00409.x PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci/Royal Soc 263(1371):755–759. doi: 10.1098/rspb.1996.0113 CrossRefGoogle Scholar
  26. 26.
    Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in C. elegans by complete removal of food. Aging Cell 5(6):487–494PubMedCrossRefGoogle Scholar
  27. 27.
    Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in C. elegans. Aging Cell 5(6):515–524. doi: 10.1111/j.1474-9726.2006.00241.x PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Klass MR (1977) Aging in the nematode C. elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6(6):413–429PubMedCrossRefGoogle Scholar
  29. 29.
    Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in C. elegans. Exp Gerontol 38(9):947–954PubMedCrossRefGoogle Scholar
  30. 30.
    Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature 447(7144):545–549PubMedCrossRefGoogle Scholar
  31. 31.
    Hosono R, Nishimoto S, Kuno S (1989) Alterations of life span in the nematode C. elegans under monoxenic culture conditions. Exp Gerontol 24(3):251–264PubMedCrossRefGoogle Scholar
  32. 32.
    Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17(19):1646–1656. doi: 10.1016/j.cub.2007.08.047, S0960-9822(07)01864-7 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in C. elegans. Exp Gerontol 37(12):1371–1378PubMedCrossRefGoogle Scholar
  34. 34.
    Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, Conley CA (2006) Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J Exp Biol 209(Pt 20):4129–4139PubMedCrossRefGoogle Scholar
  35. 35.
    Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature 457(7230):726–730PubMedCrossRefGoogle Scholar
  36. 36.
    Lakowski B, Hekimi S (1998) The genetics of caloric restriction in C. elegans. Proc Natl Acad Sci U S A 95(22):13091–13096PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Avery L (1993) The genetics of feeding in C. elegans. Genetics 133(4):897–917PubMedPubMedCentralGoogle Scholar
  38. 38.
    Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447(7144):550–555PubMedCrossRefGoogle Scholar
  39. 39.
    Brenner S (1974) The genetics of C. elegans. Genetics 77(1):71–94PubMedPubMedCentralGoogle Scholar
  40. 40.
    MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252. doi: 10.1016/j.cell.2013.02.049 PubMedCrossRefGoogle Scholar
  41. 41.
    Watson E, Macneil LT, Arda HE, Zhu LJ, Walhout AJ (2013) Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 153(1):253–266. doi: 10.1016/j.cell.2013.02.050 PubMedCrossRefGoogle Scholar
  42. 42.
    Gracida X, Eckmann CR (2013) Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 23(7):607–613. doi: 10.1016/j.cub.2013.02.034 PubMedCrossRefGoogle Scholar
  43. 43.
    Chi C, Ronai D, Than MT, Walker CJ, Sewell AK, Han M (2016) Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in C. elegans. Genes Dev 30(3):307–320. doi: 10.1101/gad.275107.115
  44. 44.
    Luo S, Murphy CT (2011) C. elegans reproductive aging: regulation and underlying mechanisms. Genesis 49(2):53–65. doi: 10.1002/dvg.20694 PubMedCrossRefGoogle Scholar
  45. 45.
    Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode C. elegans. Dev Biol 46(2):326–342PubMedCrossRefGoogle Scholar
  46. 46.
    Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, Kim SK (2000) A global profile of germline gene expression in C. elegans. Mol Cell 6(3):605–616Google Scholar
  47. 47.
    Hall SE, Beverly M, Russ C, Nusbaum C, Sengupta P (2010) A cellular memory of developmental history generates phenotypic diversity in C. elegans. Curr Biol 20(2):149–155. doi: 10.1016/j.cub.2009.11.035 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Angelo G, Van Gilst MR (2009) Starvation protects germline stem cells and extends reproductive longevity in C. elegans. Science 326(5955):954–958. doi: 10.1126/science.1178343, 1178343 [pii]PubMedCrossRefGoogle Scholar
  49. 49.
    Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118. doi: 10.1016/j.cell.2015.02.020 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464Google Scholar
  51. 51.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in C. elegans. Science 277(5328):942–946PubMedCrossRefGoogle Scholar
  52. 52.
    Duret L, Guex N, Peitsch MC, Bairoch A (1998) New insulin-like proteins with atypical disulfide bond pattern characterized in C. elegans by comparative sequence analysis and homology modeling. Genome Res 8(4):348–353PubMedGoogle Scholar
  53. 53.
    Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15(6):672–686. doi: 10.1101/gad.867301
  54. 54.
    Li W, Kennedy SG, Ruvkun G (2003) daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 17(7):844–858PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of C. elegans. Science 278(5341):1319–1322PubMedCrossRefGoogle Scholar
  56. 56.
    Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389(6654):994–999PubMedCrossRefGoogle Scholar
  57. 57.
    Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the C. elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28(2):139–145. doi: 10.1038/88850 PubMedCrossRefGoogle Scholar
  58. 58.
    Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of C. elegans. Nature 424(6946):277–283. doi: 10.1038/nature01789 PubMedCrossRefGoogle Scholar
  59. 59.
    Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in C. elegans lengthens life and reduces hermaphrodite fertility. Genetics 118(1):75–86PubMedPubMedCentralGoogle Scholar
  60. 60.
    Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in C. elegans. Genetics 150(1):129–155PubMedPubMedCentralGoogle Scholar
  61. 61.
    Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115(4):489–502PubMedCrossRefGoogle Scholar
  62. 62.
    Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science 290(5489):147–150PubMedCrossRefGoogle Scholar
  63. 63.
    Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298(5594):830–834Google Scholar
  64. 64.
    Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399(6734):362–366Google Scholar
  65. 65.
    Savage-Dunn C (2005) TGF-beta signaling. WormBook:1–12. doi: 10.1895/wormbook.1.22.1
  66. 66.
    ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273. doi: 10.1016/j.tibs.2004.03.008 PubMedCrossRefGoogle Scholar
  67. 67.
    Shaw WM, Luo S, Landis J, Ashraf J, Murphy CT (2007) The C. elegans TGF-beta Dauer pathway regulates longevity via insulin signaling. Curr Biol 17(19):1635–1645. doi: 10.1016/j.cub.2007.08.058
  68. 68.
    Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a C. elegans serotonin-synthesis mutant. Nature 403(6769):560–564PubMedCrossRefGoogle Scholar
  69. 69.
    Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode C. elegans. Genetics 104(4):619–647PubMedPubMedCentralGoogle Scholar
  70. 70.
    Schafer WR, Sanchez BM, Kenyon CJ (1996) Genes affecting sensitivity to serotonin in C. elegans. Genetics 143(3):1219–1230PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lakowski B, Hekimi S (1996) Determination of life-span in C. elegans by four clock genes. Science 272(5264):1010–1013PubMedCrossRefGoogle Scholar
  72. 72.
    Feng J, Bussiere F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in C. elegans. Dev Cell 1(5):633–644PubMedCrossRefGoogle Scholar
  73. 73.
    Hughes SE, Huang C, Kornfeld K (2011) Identification of mutations that delay somatic or reproductive aging of C. elegans. Genetics 189(1):341–356. doi: 10.1534/genetics.111.130450 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Evason K, Huang C, Yamben I, Covey DF, Kornfeld K (2005) Anticonvulsant medications extend worm life-span. Science 307(5707):258–262PubMedCrossRefGoogle Scholar
  75. 75.
    Collins JJ, Evason K, Pickett CL, Schneider DL, Kornfeld K (2008) The anticonvulsant ethosuximide disrupts sensory function to extend C. elegans lifespan. PLoS Genet 4(10):e1000230. doi: 10.1371/journal.pgen.1000230 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Onken B, Driscoll M (2010) Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans Healthspan via AMPK, LKB1, and SKN-1. PLoS One 5(1):e8758. doi: 10.1371/journal.pone.0008758 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Li S, Stone HA, Murphy CT (2015) A microfluidic device and automatic counting system for the study of C. elegans reproductive aging. Lab Chip 15(2):524–531. doi: 10.1039/c4lc01028k PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 18(3):413–421. doi: 10.1038/nm.2669 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    te Velde ER, Pearson PL (2002) The variability of female reproductive ageing. Hum Reprod Update 8(2):141–154CrossRefGoogle Scholar
  80. 80.
    Blondin P, Coenen K, Sirard MA (1997) The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J Androl 18(4):454–460PubMedGoogle Scholar
  81. 81.
    Goud P, Goud A, Van Oostveldt P, Van der Elst J, Dhont M (1999) Fertilization abnormalities and pronucleus size asynchrony after intracytoplasmic sperm injection are related to oocyte postmaturity. Fertil Steril 72(2):245–252PubMedCrossRefGoogle Scholar
  82. 82.
    Rose AM, Baillie DL (1979) The effect of temperature and parental age on recombination and nondisjunction in C. elegans. Genetics 92(2):409–418PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tang L, Machacek T, Mamnun YM, Penkner A, Gloggnitzer J, Wegrostek C, Konrat R, Jantsch MF, Loidl J, Jantsch V (2010) Mutations in C. elegans him-19 show meiotic defects that worsen with age. Mol Biol Cell 21(6):885–896. doi: 10.1091/mbc.E09-09-0811 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Greenstein D (2005) Control of oocyte meiotic maturation and fertilization. WormBook:1–12. doi: 10.1895/wormbook.1.53.1
  85. 85.
    Mehlmann LM (2005) Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 130(6):791–799. doi: 10.1530/rep.1.00793 PubMedCrossRefGoogle Scholar
  86. 86.
    Tilly JL, Sinclair DA (2013) Germline energetics, aging, and female infertility. Cell Metab 17(6):838–850. doi: 10.1016/j.cmet.2013.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, Dudekula DB, VanBuren V, Ko MS (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13(19):2263–2278. doi: 10.1093/hmg/ddh241 PubMedCrossRefGoogle Scholar
  88. 88.
    Steuerwald NM, Bermudez MG, Wells D, Munne S, Cohen J (2007) Maternal age-related differential global expression profiles observed in human oocytes. Reprod Biomed Online 14(6):700–708PubMedCrossRefGoogle Scholar
  89. 89.
    Wainer-Katsir K, Zou JY, Linial M (2015) Extended fertility and longevity: the genetic and epigenetic link. Fertil Steril 103(5):1117–1124. doi: 10.1016/j.fertnstert.2015.02.008 PubMedCrossRefGoogle Scholar
  90. 90.
    Hosaka T, Biggs WH 3rd, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 101(9):2975–2980. doi: 10.1073/pnas.0400093101 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Pelosi E, Omari S, Michel M, Ding J, Amano T, Forabosco A, Schlessinger D, Ottolenghi C (2013) Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Nat Commun 4:1843. doi: 10.1038/ncomms2861 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ong KK, Elks CE, Li S, Zhao JH, Luan J, Andersen LB, Bingham SA, Brage S, Smith GD, Ekelund U, Gillson CJ, Glaser B, Golding J, Hardy R, Khaw KT, Kuh D, Luben R, Marcus M, McGeehin MA, Ness AR, Northstone K, Ring SM, Rubin C, Sims MA, Song K, Strachan DP, Vollenweider P, Waeber G, Waterworth DM, Wong A, Deloukas P, Barroso I, Mooser V, Loos RJ, Wareham NJ (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41(6):729–733. doi: 10.1038/ng.382 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Broekmans FJ, Knauff EA, te Velde ER, Macklon NS, Fauser BC (2007) Female reproductive ageing: current knowledge and future trends. Trends Endocrinol Metab 18(2):58–65. doi: 10.1016/j.tem.2007.01.004 PubMedCrossRefGoogle Scholar
  94. 94.
    Voorhuis M, Broekmans FJ, Fauser BC, Onland-Moret NC, van der Schouw YT (2011) Genes involved in initial follicle recruitment may be associated with age at menopause. J Clin Endocrinol Metab 96(3):E473–479. doi: 10.1210/jc.2010-1799 PubMedCrossRefGoogle Scholar
  95. 95.
    Al-Edani T, Assou S, Ferrieres A, Bringer Deutsch S, Gala A, Lecellier CH, Ait-Ahmed O, Hamamah S (2014) Female aging alters expression of human cumulus cells genes that are essential for oocyte quality. BioMed Res Int 2014:964614. doi: 10.1155/2014/964614 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085. doi: 10.1371/journal.pone.0020085 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in C. elegans. Science 295(5554):502–505PubMedCrossRefGoogle Scholar
  98. 98.
    Berman JR, Kenyon C (2006) Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell 124(5):1055–1068Google Scholar
  99. 99.
    Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21(18):1507–1514. doi: 10.1016/j.cub.2011.07.042
  100. 100.
    Antebi A (2013) Regulation of longevity by the reproductive system. Exp Gerontol 48(7):596–602. doi: 10.1016/j.exger.2012.09.009 PubMedCrossRefGoogle Scholar
  101. 101.
    Kirkwood TB (1977) Evolution of ageing. Nature 270(5635):301–304PubMedCrossRefGoogle Scholar
  102. 102.
    Wu D, Tedesco PM, Phillips PC, Johnson TE (2012) Fertility/longevity trade-offs under limiting-male conditions in mating populations of C. elegans. Exp Gerontol 47(10):759–763. doi: 10.1016/j.exger.2012.06.010 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gems D, Riddle DL (1996) Longevity in C. elegans reduced by mating but not gamete production. Nature 379(6567):723–725PubMedCrossRefGoogle Scholar
  104. 104.
    Shi C, Murphy CT (2014) Mating induces shrinking and death in Caenorhabditis mothers. Science 343(6170):536–540. doi: 10.1126/science.1242958 PubMedCrossRefGoogle Scholar
  105. 105.
    Maures TJ, Booth LN, Benayoun BA, Izrayelit Y, Schroeder FC, Brunet A (2014) Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science 343(6170):541–544. doi: 10.1126/science.1244160
  106. 106.
    Ghazi A, Henis-Korenblit S, Kenyon C (2009) A transcription elongation factor that links signals from the reproductive system to lifespan extension in C. elegans. PLoS Genet 5(9):e1000639. doi: 10.1371/journal.pgen.1000639 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Blagosklonny MV (2006) Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 5(18):2087–2102. doi: 10.4161/cc.5.18.3288 PubMedCrossRefGoogle Scholar
  108. 108.
    DePina AS, Iser WB, Park SS, Maudsley S, Wilson MA, Wolkow CA (2011) Regulation of C. elegans vitellogenesis by DAF-2/IIS through separable transcriptional and posttranscriptional mechanisms. BMC Physiol 11:11. doi: 10.1186/1472-6793-11-11 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12(2):261–272. doi: 10.1080/15548627.2015.1127464 PubMedCrossRefGoogle Scholar
  110. 110.
    Zimmerman SM, Hinkson IV, Elias JE, Kim SK (2015) Reproductive aging drives protein accumulation in the uterus and limits lifespan in C. elegans. PLoS Genet 11(12):e1005725. doi: 10.1371/journal.pgen.1005725
  111. 111.
    Copes N, Edwards C, Chaput D, Saifee M, Barjuca I, Nelson D, Paraggio A, Saad P, Lipps D, Stevens SM Jr, Bradshaw PC (2015) Metabolome and proteome changes with aging in C. elegans. Exp Gerontol 72:67–84. doi: 10.1016/j.exger.2015.09.013 PubMedCrossRefGoogle Scholar
  112. 112.
    Pickett CL, Kornfeld K (2013) Age-related degeneration of the egg-laying system promotes matricidal hatching in C. elegans. Aging Cell 12(4):544–553. doi: 10.1111/acel.12079 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hodgkin J (1983) Male phenotypes and mating efficiency in C. elegans. Genetics 103(1):43–64PubMedPubMedCentralGoogle Scholar
  114. 114.
    Chasnov JR, Chow KL (2002) Why are there males in the hermaphroditic species C. elegans? Genetics 160(3):983–994PubMedPubMedCentralGoogle Scholar
  115. 115.
    Kleemann GA, Basolo AL (2007) Facultative decrease in mating resistance in hermaphroditic C. elegans with self-sperm depletion. Anim Behav 74:1339–1347. doi: 10.1016/j.anbehav.2007.02.031 CrossRefGoogle Scholar
  116. 116.
    Morsci NS, Haas LA, Barr MM (2011) Sperm status regulates sexual attraction in C. elegans. Genetics 189(4):1341–1346. doi: 10.1534/genetics.111.133603 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Maliha G, Murphy CT (2016) A simple offspring-to-mother size ratio predicts post-reproductive lifespan. bioRxiv. doi: http://dx.doi.org/10.1101/048835Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.LSI Genomics and Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Glenn Center for Aging ResearchPrinceton UniversityPrincetonUSA

Personalised recommendations