Advertisement

Topological Extraction of Escape Maps in Divergence-Free Vector Fields

  • Ronald Peikert
  • Gustavo Machado
  • Filip Sadlo
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

An escape map is the partial mapping from seed points to exit points of streamlines in a bounded domain. The escape map is piecewise continuous, and a topological segmentation of the domain boundary yields the regions and curve segments on which it is continuous. Escape maps have recently been introduced in the context of studying the connectivity of coronal holes. Computation of escape maps faces the problem of exponentially diverging streamlines, where standard adaptive streamsurface methods can fail. As a tool to detect such places and to guide escape map computation, a technique based on isoclines has recently been proposed (Machado et al., IEEE Trans. Vis. Comput. Graph. 20(12):2604–2613, 2014). We show in this paper that, in the case of a divergence-free vector field, boundary switch connectors can be used as a purely topological alternative, which to the best of our knowledge is the first practical application of boundary switch connectors. We provide a systematic approach to the topological segmentation of 3D domain boundaries for divergence-free vector fields. Finally, we explore an alternative approach based on streamtubes and targeted at robustness in escape map computation. Simulation results as well as a synthetic vector field are used for validation.

Keywords

Periodic Orbit Saddle Point Coronal Hole Stable Manifold Curve Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antiochos, S.K., DeVore, C.R., Karpen, J.T., Mikić, Z.: Structure and dynamics of the Sun’s open magnetic field. Astrophys. J. 671(1), 936–946 (2007)CrossRefGoogle Scholar
  2. 2.
    Asimov, D.: Notes on the topology of vector fields and flows. Technical Report RNR-93-003. NASA Ames Research Center (1993)Google Scholar
  3. 3.
    Bachthaler, S., Sadlo, F., Weeber, R., Kantorovich, S., Holm, C., Weiskopf, D.: Magnetic flux topology of 2D point dipoles. Comput. Graphics Forum 31(3), 955–964 (2012)CrossRefGoogle Scholar
  4. 4.
    Cai, D.S., Lembege, B., Nishikawa, K.I.: Visualization of tangled vector field topology and global bifurcation of magnetospheric dynamics. In: Usui, H., Omura, Y. (eds.) Advanced Methods for Space Simulations, pp. 145–166. Terrapub, Tokyo (2007)Google Scholar
  5. 5.
    de Leeuw, W., van Liere, R.: Collapsing flow topology using area metrics. In: Proceedings of IEEE Visualization, pp. 149–154. IEEE, New York (1999)Google Scholar
  6. 6.
    Helman, J., Hesselink, L.: Representation and display of vector field topology in fluid flow data sets. IEEE Comput. 22(8), 27–36 (1989)CrossRefGoogle Scholar
  7. 7.
    Hornung, H., Perry, A.E.: Some aspects of three-dimensional separation. Part I. Streamsurface bifurcations. Z. Flugwiss. Weltraumforsch. 8, 77–87 (1984)Google Scholar
  8. 8.
    Hultquist, J.P.M.: Constructing stream surfaces in steady 3D vector fields. In: Proceedings of IEEE Visualization, pp. 171–178. IEEE, New York (1992)Google Scholar
  9. 9.
    Kasten, J., Reininghaus, J., Reich, W., Scheuermann, G.: Toward the extraction of saddle periodic orbits. In: Bremer, P.-T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and Visualization III. Mathematics and Visualization, pp. 55–69. Springer, Berlin, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Laramee, R.S., Hauser, H., Zhao, L., Post, F.H.: Topology-based flow visualization, the state of the art. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 1–19. Springer, Berlin, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Machado, G., Sadlo, F., Ertl, T.: Local extraction of bifurcation lines. In: Bronstein, M., Favre, J., Hormann, K. (eds.) Proceedings of Vision, Modeling and Visualization (VMV), pp. 17–24. The Eurographics Association, Goslar (2013)Google Scholar
  12. 12.
    Machado, G., Sadlo, F., Müller, T., Ertl, T.: Escape maps. IEEE Trans. Vis. Comput. Graph. 20(12), 2604–2613 (2014)CrossRefGoogle Scholar
  13. 13.
    Nielson, G.M., Hamann, B.: The asymptotic decider: resolving the ambiguity in marching cubes. In: Proceedings of IEEE Visualization, pp. 83–91 (1991)Google Scholar
  14. 14.
    Peikert, R. Sadlo, F.: Flow topology beyond skeletons: visualization of features in recirculating flow. In: Hege, H.C., Polthier, K., Scheuermann, G. (eds.) Topology-Based Methods in Visualization II, pp. 145–160. Springer, Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Perry, A.E., Chong, M.S.: A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19(1), 125–155 (1987)CrossRefGoogle Scholar
  16. 16.
    Predictive science modeling support for helioseismic and magnetic imager solar dynamics observatory. http://www.predsci.com/hmi/home.php
  17. 17.
    Scheuermann, G., Hamann, B., Joy, K.I., Kollmann, W.: Localizing vector field topology. In: Post, F.H., Nielson, G.M., Bonneau, G.P. (eds.) Data Visualization. The Springer International Series in Engineering and Computer Science, vol. 713, pp. 19–35. Springer US, New York (2003)Google Scholar
  18. 18.
    Schroeder, W.J., Volpe, C.R., Lorensen, W.E.: The stream polygon: a technique for 3D vector field visualization. In: Proceedings of IEEE Visualization, pp. 126–132. IEEE, New York (1991)Google Scholar
  19. 19.
    Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors – an approach to visualizing the topological skeleton of complex 3D vector fields. In: Proceedings of IEEE Visualization, pp. 225–232. IEEE, New York (2003)Google Scholar
  20. 20.
    Weinkauf, T., Theisel, H., Hege, H.C., Seidel, H.P.: Boundary switch connectors for topological visualization of complex 3D vector fields. In: Proceedings of Symposium on Data Visualisation 2004 (VISSYM ’04), pp. 183–192. The Eurographics Association, Goslar (2004)Google Scholar
  21. 21.
    Wischgoll, T., Scheuermann, G.: Locating closed streamlines in 3D vector fields. In: Proceedings of Symposium on Data Visualisation 2002 (VISSYM ’02), pp. 227–232. The Eurographics Association, Goslar (2002)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ETH ZurichZürichSwitzerland
  2. 2.University of StuttgartStuttgartGermany
  3. 3.University of HeidelbergHeidelbergGermany

Personalised recommendations